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The study of polar fluids begun in a previous paper s continued,  Caleula-
tions for the Stockmayer potential sre extended to include the term of order
% where pois the dipole moment. The effects of higher-order terms arc
then epproximated by means of a simple Padé extrapelation procedure, and
the liquid-gas coexistenee curve is located in this approximation. An
orientation-independent but temperature-dependent potential that is thermo-
dynamically equivalent to an arbitrary arientation-dependent porential is
mtroduced and used to assess the lowest-order thermodynamic effects that
result Erom the presence of quadrupole and occtupole terms in the pair-
potential,  Several values of quadrupole and octupole mements representative
of a dipolar molecule (HCL) as well as linear molecules (N, Oy and CO,, for
which p =0} are considered.

l. InTRODUCTION

This paper is a sequel to an earlicr publication [1] on the thermodynamics
of polar fluids, We refer to that paper for the necessary background and nota-
tional details, but recall parts of the theory which are relevant to our discussion
here.  The perturbation theory that is used in our numerical work [2-4]
assumes that the orientational part of the pair-potential ©(x;, x;) for two molecules
can be treated as a perturbation of a spherically symmetric potential #,(r) which
characterizes the reference system

o(x, !J:}='Ell-,[jr}| + E Aemo(;, x,f} 3 A2 0. (1.4)
&

Here we shall consider t{x;, x;) such that the directional effects, which are
represented in the perturbing potentials Agze(x,, %), ure assumed to he due to

1 This work includes material from a thesis submitted by H. Narang to the feulte of the
State University at Stony Brook in parnal fulfilment of the requirements for the degree of
Mlaster of Science, May 1972, Y
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interactions among point-dipoles, point-gquadrupoles and peint-octupcles
situated at the centres of these molecules.  Other orientational effects associated,
for example, with the shapes of the molecular cores are (for the present) ignored
5,16, %

The strengths of the perturbations which are measured by the parameters
{Az} are related to the dipole moment g, the quadrupole moment © and the
octupole moment @. Higher moments are not explicitly considered in this
study. Intable 1 we summarize the moments of a few real molecules (CQO,, O,

Lennard-]ones Electric moments Beduced electrie
parameters mamentst
el LV G 10

£k o (e.s0, o) (esa. cm®) pt =&
Ci, 190 -0 0 —43 0 0-83
Oy 113 346 0 —0-39 0 0-137
N, a5-1 371 0 —1-52 0 -5
HCI 218 351 103 k) 903 0-949

t See (1-2) for definitions. The Lennard—jones parameters for CO, (viscosity data)
and Ny (second virial-coefficient dara) are from table 4.9 in ref. [26], The corresponding
pararneters for Oy (second virial-coefficient data) and HCI (viscosity data) are from ref, [27],
tubles 3.6-1 and B.6-1, respectively. [The HCI parameters sctually refer to an approximate
Stockmayer potential.) The dipole moment of HCI is from ref. [27] while all of the
quadrupole moments are from ref. [28].  We note that the reduced moments p* = (p/es*) 22
and B* =(B%en®}'** are very sensitive to small chenges in the potential energy, bur in this
paper we have used the gbove values simply as a guide to determine representative reduced-
moment values that are of physical interest.

Table 1. Potential energy parameters for © polar ' molecules.

Ny and HCI) that we have used as a guide in choosing representative sets of
reduced moments in our numerical computations. Our model particles, like
the real molecules we have listed, are assumed to have axial symmetry, which
simplifies the application of the theory. Additional simplifications occur in the
treatment of the perturbation p%" due to point dipoles when the reference
potential wy(r) is identified with the Lennard-Jones potential, »%(r). If the
higher electric moments are ignored, the total potential U + 4280 is just the
Stockmayer potential [7] o8

v® = o (r) + p2oP(x,, X,), (1.1)

where oz} is given in (2,2) and vP(x,, x,) was defined in our previous paper
[1] as (—2 cos 8, cos #,+sin &, sin 8, cos ($, —¢))/r®, where the angles &, f,,
¢y — ¢y are those necessary to describe the mutual erientations of two dipoles.
The Lennard-Jones parameters e and o which we use for our representative
maolecules are reproduced in table 1 with the reduced electric moments defined by

: 2412 ey 1 hEy 1
L - F_ 2 | - I
e (iﬂ's) 2 (scﬁ) i (e .::'-') e

Our computations for the Stockmayer potential are mainly for p*= 1) which is
close to tabulated values of the reduced dipole moment of HCI (0-903), ammaonia
(1-183), sulphur dioxide (0-916) and methyl chloride (1-0). We also discuss the
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contributions of the higher moments 1o the free enerpy for the molecular para-
meters of table 1.
When the reference potential is spherically symmetrical, the expansion of the
free energy per particle f is given by [1]
F=fat i+ IO, 00 L OO 2, 0y (13)
to O(p'OAD%), where 1+ j+ k=4, Here f, is the free energy of the reference
system, and for molecules which possess axial symmetry

5o

Fis s halizt 4, (1.4)
it —’%J gilryr—t dr, (1.5)
fa" = ~%j £y dr, (1.6}
d
: Fig e "‘fpff"[f}f"“ dr, (1.7)

where 2%¢) is the two-particle correlation function for the reference SYslem,
2 =1/2T and p is the number density. The sum of the first two terms of (1.3}
is the free energy of the Stockmaver potenttal to Ofud) if e lr)=<""r) and
Zo\r)=g"(r). The term which must be added to (1.3) to determine the effects
of dipnle-dipele interactions to order u¥ is

i

ptfyt = EW _F L1237y, Pras Pag JuU, 00l {xy, Ay o %, Xy )
#drydry dew, dw, duw,, {1.3)

where g,5," is the three-particle distribution function of the reference fuid.
After the angular integrations in {1.8) are carried out, it turns out that

E H_Iuﬁﬁtpz [{rh] 7, . I!I JI l 9
Bt = f J-Elza' Mriz Fia Fag JU(F gy Fige Fag) dFy e Py, (1.9}

where u(ry, iy, ray) is of the form of the Axilrod-Teller-Muto three-body
potential [3]
I +3 cos =y cos a, cos ::,g—l

”{"1ur s IIEH}= !} [ {fm-"mfua.]ﬂ J‘

Here =, &, and o, arc the angles of the triangle formed by the particles lacated at
roryandr, The free energy of the Stockmayer potential to Of%) 15 accordingly

= 1 i O, (1.11)

in which the two-particle am. three-particle correlation Tunctions for Lennard-
Jones systems are used in the definitions of fo0 and fr
With the cxeeption of the explicit form of the term of O almose o1l of the
theéory outlined above for polar fluids had already been deseribed in the carly
1950's by Cook and Rowlinson [2], Zwanzig [4] und Pople [3]. Nevertheless,
it is only recently that the cquilibrium properties of molecules with spherically
4y 2

(1.10)
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symmetric potentials [9-15] have been available in a form sutficiently convenient
and accurate to permit assessment of even the leading terms in {1.3).

We have exploited some of this new infermation in an earlier publication [1]
where we calculated the free energyv of the Stockmayer system to O(p') for
p*=1-0at T* =075, 1-15, 1-35 and 274, \We¢ now go beyond those caleulations
to include the effect of uSf,e, which proves to be of major significance at ™= 1-0.
The u'fy* and w¥f* terms are negative and positive respectively with
pdlfat| = p8|fe*| for p*< 10 at all 7% and p* that we have studied. These
observations suggest the following simple [1, 0] Padé approximation for the free
energy of a Stockmayer system

] 1
BiS =Bl 4 Buifye [ 1+ ﬂkﬂ ’ (1.12)
f-“dlfu'"[

which is used to calculate the coexistence curve for a Stockmayer svstem in § 2,
where other details of our computation for this potential are also avatlable.

In our first paper [1] we also found it convenient to use thermodynamic per-
turbation theory within the context of an effective orientation-independent but
temperature-dependent potential that iz thermodynamically equivalent to a
dipolar pair-potential through order w'. We generalize this notion here by
introducing. an orientation-independent but temperature-dependent potential
¥, that is exactly thermedynamically equivalent to a sum of orientation-depen-
dent pair terms. It includes m-body terms for all #z 3 as well as puir terms ;
we assess quantitatively the two-body dipole—dipole term through order p* and
show that the 3 contribution is negligible compared with its g! contribution for
p==1-0.

In §3 we go on to assess the effects of higher multipole interactions on the
free energy by using the ¢ffective potential concept. In doing so, we retain only
the lowest multipole-moment contributions in the expansion of the effective
potential, which yields

z.i-:{,.}__FﬂL..r(,}_|_.U|L1_1[l,.}+ﬂmm{,}+.HF.QQ{,-}_,_ﬁlf-l‘ﬂ{;-}, (1.13})
where ,
El i 1.14
T = — e 1.1
R }
P} = — E,I,;_fu r8, (1.15})
T
pE Y = —1.-_;“.:'7.'"1". (1.16)
: Fe2ah®
S5 1t WL el A T A7
okopy) = 38T, (1.17)

The dipole-quadrupale, gquadrupole-guadrupole, and dipole-octupole contribu-
tions of 2¥(r) are computed by using one of the thermodynamie perturbation
theories (tpt) that hus been develaped for spherically symmoetric patentials [16].
[t 15 found that the cifecrs of the higher multipole inoments are large for moments
typical of a real dipolar molecule such as HCl —large enough so that the simple
lowest-order theary in those moments given by (1.13) is probably inadequate to
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deseribe not enly the dipale—-dipnle effects, bui also the effects of the higher poles.
On the other hand, when our potentials are assipned value of the multipole
moments characteristic of molecules like N, and O, which possess no permanent
dipole moment, the contributions to the free energy from the quadrupoie moments
are small enough for a treatment based upon (1.13) to be fairly reliable.

In the Appendix seme simple analytic approximations for the integrals that
occur in our perturbation-theoretic work here are tabulated.  Their usefulness,
especially in thermodynamic perturbation theory, goes beyond the specific
examples considered 1n this study.

Z, THERMODYNAMICS OF THE STOCKMAYER POTENTIAL
2.1. Recapitulation of results through O(p?)
The free energy of the Stockmayer system to Ofp?) was discussed in our
carlier paper [1]; it s given by

i LT |

ﬁfs[“-i-,ﬁf“-‘-x Lq.lﬁuj.,] __!ﬂ—:‘ -'-'1J1 {2_1‘}

where y=u®247* and T*=4T/e. For the Lennard-]ones potential

ST [(9 e _(;)J o

the ENergy per ]mrtiu]u M= rends

Buld=L8p [ o{r)e™(r) dr {

13
=3
—

I
LEX ]
St

= 2[L, - 1], (2.4)
where
*FL::"J(Pa! T#}_Tpsﬁ; j‘.r—lEgLJErkl T*:I dgr* ] fj_:‘,]
and
10 (p¥, T#)= p*f* [ r#=SgL7(r%, T%) dr¥, (2.6)

in which we have used the reduced variables §*=1/T*, p*=p0% and r*=rjo

(£7)6 is the 8%/ of [1], mistabulated there as — §*J and missing an asterisk in
(4.2)). The excess compressibility AZ™ from the virial equation
g pLs LT
AZWT =l 1= — 0 | e gV dr 25
- o fr o g (27)
can be written as
AZVT = 4[2],, 09 — [0, (2.8)

From equations {2.4) and {2.8) we have

Y [Efr_J : ﬂ} (2.9)

3 )
& 51"'"']_ (2.10)
L

This enables us to cipress the integrals £,,07 and £ in terms of the thermo-
t{}":u'l:lﬂil: pl‘UpE‘l‘tius of Ln._'rln:lrd—_[um:s systems, ;wuidfng the need to know the
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radial distribution function g=7(7). It also enables us to write the free energies in
(1.4} in the form
Butfyr = — 4y L0 = 4B — AT {2.11)

Equation {2.11) is equivalent to {2.1). The best estimates of the complete
thermodynamics of a Lennard—Jones fluid are the essentially exact Monte-Carlo
and molecular-dynamice results. We use the exact machine caleulations
(tabulated by Verlet and Weis [14] from various sources [13, I3]} to compute the
integrals [,,"7(p*, T*)and /(g% T*)at T* =075, 1-15, 1-35 and 2.74. These
are given in table 2.

At the temperatures for which the exact thermodynamic properties of the
Lennard—Jones fluid are inaccessible, the Weeks ef af. [17] (WCA) perturbation
theory [in the form deseribed by Verlet and Weis [14] (VIV)] can be used to

T 73 1-15 1-35 274

_'-J.‘ _l!"r..T{Pt: Ti:l
a1 1-34 63 -3l 22
02 2-21 1-1% L-ag [+
0-3 2-98 173 1-38 (69
4 371 231 1-86 42
-3 431 273 32 =
M-35 — - 2-59 1-34
& 505 337 - s

G-63 — 370

70 AR —_ 3-31 1

(&0 732 — 4-25 221
-84 790 — ram -
-9 — e 309 265
95 — —_ 356 —_—
1400 — — — 312
1-08 e — — 3-53

Iltl..l'['ln’\-, T'I:’]
01 038 028 0-22 011
0-2 95 051 44 022
0-3 1-27 (-76 il 036
-4 1-59 097 (rE4 048
1-55 - — 22 053
06 214 1-37 = it
[+65 o 1-76 —_ —
070 2-70 — 178 112
1180 347 - — :
(-84 387 o -~ —
1-45 .01 s
{490 e —_ 259 -84
(92 - Ay = —
(IR —- - 343 - —
1400 — — — 2-3R
1-04 e - - 284

Table 2. The integrals £,09(a%, T} and £,.8900%, T obtained through the use of equa-
tions (297 and 12,100 and the Aonte-Carlo results {tabulated by Verlet and Weis) for
abd gped LT - g
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caleulate AW, ful’ and AZ™ in terms of the equilibrium propertics of hard
spheres.  This method was used in some of our earlier calculations of the excess
free energy of the Stockmayer potential to (') represented there by fE LN
where the vw denotes the Verlet—\Weis version of the WCA perturbation theoty.

2. The teran of arder et

rwm

Our evaluation of the three-body term of order w* exploits an expression given
by Barker et of. (BHS) [18] for the integral in (1.9) where the triplet correlation
function g, refers to hard spheres. They used the superposition approxima-
tion for g.™, with the Percus—Yevick values of the pair correlation funciion
2., and found that their results for the integral in {1.9) agreed well with a direct
Vonte-Carlo (MC) evaluation of the same integral.  The superposition Approxi-
ation method feads 1o numerical values for the integral that are reproduced 1@
within 1 part in 11 by the following Padé approximant [13]

4 2 - - ' LR Bt a
Byubf =I|9*3r;#ﬂp“— ]:E-xlllf}.r +_J -ﬁiﬂ':l].fs.t - {.J-J_lz;.fl.\:l (2.13)
; ‘ O3 1 — (3556 — - 20035
gafra B'fer Anifan gAjt Hutfa Bty
o (VW) (VW) (BH=Y (W) (W) (BELZ)
T4 =073 T*=1-15
i1 —r332 —11-135 (1108 —-293 (050 e
oz —1153 - (284 0034 —3-605 =124 L
3 — 1787 — [1430F 053 - (923 —i-197 11924
(-4 —2ald —i633 Q=169 — 1232 — 277 (045
(-3 — 067 — (-840 02491 —1-510 — (368 INENEE]
0 — 3 —1-070 (-] —1-731 — (1468 o-130
65 — 3906 -1-186 (-564 — -804 — 323 o-15%
{170 —4131 -1-329 652 — §-35% —1-581 0-1493
073 —4-313 — 1471 &1a — 187+ —~(-634 0231
080 — 442 — 1624 0-964 —1-848 — 709 (-273
-85 — 5015 —1-787 1-127 — 1767 — (779 -3 10
0G0 —4-4 B —1-962 1:308 — 1628 —(-851 0369
095 —4-367 — 2151 1:5005 — 1418 {932 (1526
1-0) — 4125 —2-332 1-719 —1-125 =1014 (480
T*=1-33 T4=2.74

i1 —i322 ~ (043 Qi — 020 —0011 (-0
iz —-433 —{-02 [-on7 — 031 — 24 -0
i3 —0-nBH — 0145 046 )27 — 138 (02
-4 — 0006 — 1204 030 113 — 054 EEIE
-5 — 100 —-0-271 0-0052 (1Dt —n7l RN
-6 - 1218 - (-3444 (0082 - 150 — -4 (R
11-65 — 1+2510) = 1-1584 -tk (2050 SIERED| -0 2
07 —1-234 — 0427 0-121 1372 —i 113 SR
075 —1-329 — =472 O-143 )47 —4-123 415
R - 1-164 —{-520 170 (4 — -1 37 (02
-85 - 1-053 -0-571 1+ 149% 425 i ] 1024
9 ~1HHE = 11623 (-231 1-042 —11-155 2y
1} — (339 — 174 (303 1585 —11- 143 037

Tuble 3. Perturhation theory (Verlet-\Weis (14} and Padé approxinant [ Baeker of al
(187 estimates of BAFT, 2.0, and @ntfyt for p® =1L
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where x=p*c® and c=a/s; a being the hard-sphere diameter. In our use of
(2.13), @ represents the diameter of hard spheres that is appropriate to the Verlet-
Weis perturbation scheme ; very nearly the same results are obtzined from other
choices of the effective hard-sphere diameter [16].  Our results are summarized
in table 3 which shows that the three-body interactions of order p# are opposite
in sign to the term of order pd.  Their magnitude is not negligible, and we include
them in computing the excess free energy of the Stockmaver potential to erder uS
which 1s
BAJ6I= BAFSW) 4 By, 2.14)
where
B = BAFLY + y[4uts — AZV], (2.13)

The excess free energy per particle Af is defined by
Bif=Bf —In g* + L. (2.16)

Fipure 1. The reduced free energy per particle BAfS For the Stackmayer svstem (For
p*=1-0), obtained from eur [1, 0] Padé approximant, compared with the froe cnerpgy
of the eorresponding Lennard—Jones svatern at four different temperatares T* =075,
1-15, 1-35 and 274, Ax T*=075, fgafse and A the reduced {ree cnermes of -
the Stackmayer system to order o and p° respectively, are also showrn. All of the
results, except for the term of order pf {obrained [rom the Burker ef al. [18] approxi-
mation ) were derived from Mante Carlo resuits for the thermedynomics of Lennard-

Jones m?li:i:ules [13, 15].
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Figure 1 depicts the contributions of the terms of order p® and 3% to the excess
free energy of the Stockmayer system at a reduced temperature T*=10-75. It
also shows our best cstimates of the excess free enerpy of the Stockmayer system
AAf8 at four different temperatures T*=0-75, 1-15, 1.35 and 2-74. These were
all obtained with the simple [1, (1] Padé approximant (equation (1.13)) discussed
in the introduction ; the details are provided in tables 4 and 5. Included in the

o VW BHS AMC+BHS VW+BHS MC +BHS
T* = ()75 T =115
01 — {68 —1-09 —0:35 — 047
02 —1-41 -1-94 -072 —0-89
03 - 217 — 260 —1-10 —1-28
-4 —2:94 —337 —~ 147 162
0-5 ~ 369 — 305 ~1-81 1-52
i+ — 440 — 452 -2:10 = oy
065 —-472 = e ) | — 335
070 — 501 - 506 —2:30 —
0-75 — 526 — -2:35 -2:37
0-80 ~ 546 — 549 —~2:36 —
0-84 = - 562 = 5
0-85 —5-60 — —232 -3
0-9 — 566 —222 o=
093 — 563 it —2:006 — 218+
1-0 -5-49 o 181 E
+p*=0-92

Table 4. The excess free energy of the Stockmaver systern A7 for p* = 1-ltabtained from
the {1, 0] Padé approximant defined in (1.12).  The teem of 0{u®) iz caleulated fram
the BHE expression (2.13), while the term of 00p:%) {see (2.11)) is derived either trom
WW tpt or MO estimates of 4 and AZM, The twao sees of [1, 0] Padé approxima-
tions o @AF? are labelled VW + BHS and MC + BIS respecrively,

a* VW4 BHS MC+BHS VW BHS MC 4 BHS
T*=1.33 T*=12.74
o1 026 —0-35 — 03 — 004
-2 — 54 — 08 —[-05 — (-
-3 — {82 — 096 — 006 — (09
4 —1-08 — 120 = {1015 — [0&
5 —1-32 =140 -0 —
55 — = 1-40 — — 004
1510 e 11 = 010 —
65 =156 e 018 -
-7 —1-39 - 163 1-27 027
0-73 — 139 e n-39 -
-850 —1-36 —1-54 -33 -3
-85 — 148 = (170} —
a0 - 134 —1-37 11-101) (320
(a5 ~1-15 - |-i7 - 1-14 -
10 —1-89 - i-42 [-42

Tuble 5. ‘T'he exeess free enwrgy of the Stockmaver system 2309 abiained Erom the [1, ]
Padd approximant defined in (112} {see caption of mible 4 for details).

g e T
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Figure 2. Liquid-vapour coexistence curve for the Stockmaver svstermn caleulated from
A5 and 7%, using the Verler=Weis tpt [14] for the thermodynamics of Lennard-
Jones molecules. At T*=1:13 and Ta=1:33, the dunsitics of couxisting phises
caleulated from 3% using Monte Carlo results for the the rrmadynamics of Lennard-
Jares molecules are also shown, as s our beost cstimate of (p®+ o™ )2 bee
comments in table 6.

From gfst From the [1, 0] Padé approximant for 37
T pL* [ pL* gri® ;M AP e
0-75 0-938 008 0878 RV — 679 0-0016
085 892 0084 3-53% -4 —5-062 0-06033
0-95 N-238 0012 0791 IR —4-77 0-0067
105 0- 790 -3 75 oLy —412 (0167
115 =740 O0za - 700 025 — 360 (03
1:35 (628 007y (588 O 0E% — -89 -0667
1:45 (568 118 0-523 145 — 263 O-(193
1:35 (1-473 {208 0407 k225 — 242 0119
1-38 1-308 0308 N-317 317 - —_

Tuble 6. Corsistence curve data in the Stockmayer system for o* =10 from our [L,C]
Pudé approvimant for SAF%, and from A using Vurler=\Weis tpt Tor Lennard-
Jones svstemet,

t The pr® and ps® values are sensitive to small unvestaintios, and those given here are
unlikely to be ol high precision. They were determined to show at a plance the penwral
extent of the corgistence recion cacher than to locate its boundary with mreat accuraey. The
substantinl differences between the tpt and donge-Carlo phose-houndary locition  that
appear in fipore 2 indicate that effors to obiain greater procision [rom our tpt results would
e unwarranted, althouph we do hope o determine whether greater peecision will alter the
Inreresling curvature =hown in our estimate of (pu® 4 pu? 143
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same tables are more accurate vstimates of BAfS derived from the same Padé
approximation except that SAf' snd Guif.s {{:r cquivalently BAf51Y) are evaluated
exactly from published MC computations of Aj™, &5 and AZW [{see equations
{2.11) and {2.15}). ‘That is to sav, in forming the [1, 0] Padé approximant the
term of order p! 15 exact, whereas the term of order 4% is obtained from the BHS
expression given in (2.13).

The discrepancies between the Monte Carlo and tpt estimates of FAf® are
mmnly within the two-phase region (see table 6}, and since the iatter estimates are
more complete, we have uzed them to calculate the coexistence curve drawn in
figure 2. The densities of the coexisting phases are available in table 6.

2.3, Thegeneral concept of effective orientativn-independent potentials | guantitative
evaluation of v55% thrangh O[pt)
The configuration integral for JV classical particles interacting via a sum of
pair terms af the form expressed in (1.0} is

i

1 PR
Oy=— [ dx, dx, ... dxy cap {—_ﬂ DT K;J}. (2.17)
Ll-\' [EAETESY
where x; =(r,, w,) is the vector describing both the location r; of the centre of the
fth particle and the orientation w, of the particle, while =) dw;. Defining
'¥ofrs, Pay o .. Fy) bY the t:quuticln

exp { =B lry, vy oo )l = ﬂ — | dway .. dwy

-

ytrxP{—,ﬁ’T"x X;) 1') (2.18)

=

1.

(with the same limits on ¢ and ;) so that
er.'.lz J- l':frl rew dr.'\r‘ t!.'{p { - Irj'-]-'":ll_[r_h baE r_1;_}}| fz-l“:.-]_}

we see that a hypothetical system of NV particles interacting with a e -indepen-
dent (but g-dependent) potential energy V', will have exactly the same free
energy as our original svstemn,  However, %, will no longer be expressible as a
sum of pair terme.  In fact, we can uniguely decompose 'V into & sum of two-
body, theee-body, . .., n-body terms by letting

Valry or)= 8 (e, r)+ Y delrrar)+.., (2.20)
lsiag sy | =icj<m=sn
where
e, Py =", v, (2.21)
dalFye P 1) ="Flry, P ) — X (P, 1), (221)
| sray=2W

ete.  When oix;, %) in (2.17) is the Stockmayer potential, dircet computation
shows that

'J'I'-:{rn I"!}=-.r""'{.r] _|_.|.:l|-!|I|:I.:] F ey I'[J :I+G|['r¢ I,E.::‘!']I
where o0 g the lennared _I'c:ru.,'ﬁ '|']|:?1,l!]'.|[i..']l,, E'll'-'” i r:LlUJJ!iL:iL];}' AL duefioed
{1.14}, anl

250 = (Pt 450 )2, (2.24}
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while
- = 2 i qE
(P, Fa, vy) =i B2 s g Feg) + ”(."—‘m}- {2.25)
where ey, rig, ryg)is givenin (110, More generally (in more-or-less standard
notation [19), with tr signifying trace) :

Lo i A | 2% n
S e MU f(’ = ) tr Tr+ Outnd).  (2.26)
,J

2
The tensors T have been defined and discussed by Linder [19]. We sce
that through order ud, 4, is just the ' effective Stockmaver potential ' v =
vll{r)+ v®P(r) of our previous paper [1]. As noted there =58 is conformal with
the Lennard-Jones potential w17,
Denoting o, through order p® as 2592, we sec that ©¥52 also is conformal with
et since from (2.2), (1.14) and (2.24),

'EER52='Z']‘J|[.F’) + r':“(_rj 'i‘?.'gE]:'I:F'J [gj?:‘

;(;:}""[1 +2y)- (%)Gu + ZXJ], (2.28)

where y = u*4 24 T* and = 2832/25T% = 7813600 T *%.

Thus
“h 12 Y|
et o o] [ R DR AL

where € =(1+2y)2(1+2%) and o"=(1+ 2yPERT + 24312 By following the
argument pertaining w @™ outlined in our earlicr paper [1], we have from the
law of corresponding states a simple relation between the thermodvnamics of the
Lennard—Jones (L]) and ' cffective Stockmaver 2° [ES2) systems

Af¥SHp, T)_ afi9(p", 77)

=4

(2.29)

e R 2.30
kT L ( )
and
ES2f ¥y PLIf
P [{:, e (,u.f L (2.31)
pke T a kT
where

e [t ; e R P
_{—1_'_2){}33" and p'= I-i—ﬂv-/l o

i

We already know from the Gibbs—logoliubov inequality applicd to 28 that [29]
BAES = gAfE, (2.32)
By applying the same inequality to 2952 we have

78800

Bafrst< gapsw g Lo

[ 2%(rir="" dr., (2,33}
In table 7, BAMYS2 ynd BAF® are compared.  The magnitude and sign of the
difference are consistent with {2.33) and shows that the term of order @& in 1=
makes a negligibly small positive contribution to the free energy for % = 14,
The results reported in table 7 were obtained from (2.30) and the corresponding
eipumtion for gkE by using the Verler-VWeis version of perrurbation theory [l-l-]
to caleulate AT 90 tenns of the properties of hard spheres,




Tﬂfrmad_}lnamf{' _ﬁerfrfrfn’.rn'un kur_—,- f.'u‘ .i‘.!-rfiperﬁ po.’.rr _;:'Hfds 1405

AAfpw 22 BAF.RES GAF. TS BAF.KS BAF L ESE gAf  E3 gAf, UST BAf K5

e T=*075 T*=1-15 T#=1-35 Te=1-74

01 —0-685 —0-689 —0-352 —0-353 0265 —0-286 -0031 —0-031
03 —233Y ~2245 —1-119 —1-122 —0-832 —U83¢ —D-065 =0:065
05 —3-888 —39I8 —18§7% —1-840 —1-359 —1362 —0-002  —0-002
07 —5HD  —5470 -2432 —24H43 —1678 168+ 0260  0-260
(-85 —63223 ~63299 —2.532 =2548 =1616 —1624  O-6BO0  0-679

Tuble 7. Comparison of the ES and ES2 approximations to (8T)7" times the excess free
energy pér pacticle of a Stockmaver svstem for @®* =140, See also [29].

A direct evaluation of the free-energy contribution from the two-bady term of

order uf

T BE3 .2
B, o =%§T" [ g'(r)r2 dr (2:34)

iz poszible, because of (2.9), which leads to
Butfe, o =dydigh! = —[2fulT — A ZM), (2.35)

where 3= 7p*/306007%3,  Monte Carlo computations of &™f and AZLY enable
pEf. o0 1o be determined accurately,  In table 8 we compare this with p!f.”
sbrained from the analogous cquation (2.11), and confirm our view that the effect
of the two-body terms in g bevond o%¥ are negligible at p*=1 over the entire
range of temperatures and densities investipated here.

When the ©(x, x;) in (2.17) is taken to be a ¢ plus sum of ideal dipole-
dipole, dipole-quadrupole, quadrupole—quadrupole, and dipole-octupole terms,
then (r,, r.) is given by (1, 13) throvgh order p/EWVOF f4 f+h=14

o AAfLT gpifye Bretfe, o gafed Butfa Bl o
T* =075 T*=1-15
-1 — (80 —0-30 a-01 — (38 —0-09 a-on
-3 — 210 — 67 002 —1-03 — 25 000
5 —3-22 - 94 003 -1-5% — (-0 201
370 - 4-17 - 1-33 (0-05 = = -
-8 —d-57 —1-63 0-06 - T ]
(-85 — 531 — {75+ 007t —1-78 - (178 002
T* =135 =274
1 —0-29 — 06 G-00 — (033 — -1 Q-0
03 =80 - 17 000 = {03 — {4 IS
i3 —1-16 —0-29 -1 — e -
0-70 —1:29 — {43 001 037 {11 (1003
(-80 -1-1% — {52 0-uf 065 —ik14 0-00
0-93 = 67 - 1-649 {1011 - s
T a® =184,
"ehle 8. Dlonte Cuarle estimares of 25700 20 Fe and geff, o0 for n* =100 (When

e =140, Jpctf is identicolly coual to = g*4 defined tn our previows puper [1], where
oI more complers tabulation of Monte Carle estimares nf this term are avilahle at
TH=075, 1-15, 135 and 274 Inowble | oof [1], 8%<F should be — G*25F,
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3. WUMERICAL ESTIMATES OF QUADRUPOLE AND OCTUPOLE TERMS

We restrict ourselves here to an exploratory investigation of the effect of
multipoles using a version of tpt that we have previously employed in obtaining
hounds on the frec-energy of Lennard-Jones fluids [16]. Recent advances in the
use of tpt [17] will make it possible to improve the numerical aceuracy of future
computations if necessary 3 here we limit ourselves to aspects of the problems that
are relutively insensitive to the finer points of the computational technique vsed.

In order to discuss the significance of our numerical results it 18 of value to
hriefly review the details of the perturbation scheme that we have used in
obtaining them. \We shall start our discussion by considering the decoimposition
of ¢M (¥} into a hard-sphere part and a remainder 2(r)

o) = wlS(r) + w(r), (3.1)
where
o8y =, r<ce
=, r=eo (3.2)
and
wiry=—so+ell(), r<ea
'fr}, >, [3.3]

Diespite the highly singular nature of @ for r < ca
) g"8(r, calue(r) dr={ g"%(r, co)oti(r) dr (3.4}

exists and is well behaved beeause '3(r, co) =10 for r<co. Then the Gibbs-
Bopolivboy inequality guarantees that

-
el
i
—

:.lJrLJ{'P*r :I irllml:}]afd]_'_, j‘ ,,.Ji'-'{{,.’ fr:r}t'l"’{r':l ”-r‘

which means that the right-hand side of (3.5} is an upper bound, By choosing
a ¢ that minimizes the right-hand side of (3.5} we have chosen the best ¢ because
we will have minimized our upper bound.  Through a similar decomposition
of
wB8(r) = ol (r ) 4 w B0 (), {3.6)
where wB(r) is defined in (1.14), we have
AfES(p*, u¥, T*) < AfUS(p*c?) +5 [ g0, colo™S(r) dr. (3.7)

The right-hand side is an upper bound on an expression that coincides through
O(p") with the excess free energy Af¥ of the Stockmayer potential. (It is not un
upper bound on AfS itself, but when the difference between the two is negligible,
we can replace the upper bound on Af® by the upper bound on Af%S.)  For a

given ¢ the only difference between our upper bound for Af*S and A~ ara
fixed T and p* 15 the term
f"‘”='l—; i :r!:,ll!i(}.l el dr
_[ gUS(y, co)r dr (3.8)

Ga’e T
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where g"'%(y, eo) is the distribution function of hard spheres of diamerer co.
This s a functmn of two variables v=rfco und x = p*c®, so that once

LS(x)= | g9y, x)yior dy (39)
is computed for m=90, the term

p I () = 209439550 *4 T, 1150 x)
O(kT(co)® PIVEE

B = — (3.10)

is known for given p*, p* and T* if ¢ is known. Thus our upper bound to &8
ig fUS 4 fald L gAD suhere

4e T80 THE(x)
SLJ E | T a4 12 / _ 'k
aF 3 {&F) (co )4 |: T ~

i L&

3132741 [ 15175
;,f_fj Li (x) — I,A%(x ]:’ {3.11)

(o

More generally, if @%0, 54 and ¢EU9 are included in the potential, then our
upper bound for f¥ the free energy that corresponds to «B(») in {1.13), is
JTHS L JI-'-"I.J _1_Jf~"ll :_1|:-m _;_J;-‘-Iju_:_fdlml where

M I (x)  6-283185x%2 111504

Qeanty _ A~ o L $15(x). -
L 2T Plco)? T2 (3.12)
gfs— _ TP,‘LJ‘*T-"J"m”E{':C}__ i S-FUBIITEE L, TS ) (3.13)
“}fk]"?]”{.:‘a:ﬂ cloTrEd 7 -
gfavo — 2pui P34l 18 () 8 3;:7!;;:_,‘3.#*1.,“;-{ ““‘{'l.j Ak
SIS kT e) T T h— :

Thus one can obtain the best upper bound for f* with the hard-sphere reference
system by minimizing f118 4 f81J 4 fAD 4 fADR L F30 4 (310 \ith respect to c.

Polynomial approximations to £,"%{x) for n =0 and n=12 have already been
given by [Kozak and Rice [20]. These were obtained using the Percus—Yevick
U v, 2) In the course of our work we have derived approsimations for
L) with n=6, 8, 10, 12, 18 and 24 which are better than those abtainable
from the Pereus—Yevick theory, They appear to be in good agreement with
the T, 8(x) ealeulated from the exact g"%(w, x) for hard spheres which are
available from the enmputer studies made by Schiff and Verlet [12]. Verlet and
Weis [14] have also given analytic approximations to L"S(x) and /,"3%(x) some-
~what similar to those discussed here.  We consider the I in detail in an
Appendix.  Since the functions are ubiguitous in the statisticul mechanics of
hﬂrd—s[.:hur-;: fluids, accurate and simple clozed-form approvimations to them
enormously reduce the time invelved in perturbation-theory caleulations.  This
15 particularly so far our own variational procedure [16] which requires the
caleulation of £,15(x) (where x=p*c?) at several closely spaced values of ¢ for
vach given p* and 1'%,

Using the new approximations for [,"3(x) and a Pudé approximant for Af1e
(Ree and Hoover [10]) we recomputed the upper bounds on the free enerpy of
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The results for COy, N, and HCL are shown in figures 3-5 while those for O, are
not displayed because of the negligible contribution to the free energy from the
quadrupole moment of (.. The reduced quadrupole moment @* occurs as the
fourth power in (3.13), and since &* = 0-137 for O, the effect on the free BRETRY I3
small in comparison to what it is for N8*=0-501) and CO/@*=0-83). In
the case of a molecule characterized by the reduced dipole moment of HCI, the
results of § 2 already made clear that the contribution of the dipole—dipole

-2,

5k

=
]
I
|

-0 ! -

o 0.5 T

Figure 3. Approximation to (87)-! times the free energy per purticle of @ svstem with
potential energy parameters {g, @ and 13} that correspond to N, (see table 1), (The
experimentzlly deterrmined reduced cratieal temperature of M. s T = 5T je= 1-31,
where & is Boltzrnann's constant. }

a0 T e ey :
Bat ——— g = Tt
I
] — @" =0d30 |
20 ~ 274
u'--"— --'
.'-f"#-." E
o _"'_'___-'L_:_:-:-ﬂ_ -
_——— LTy
"'-u.n,.\-:-el_\._:_:b_;\-_\__‘_ _ﬂ.-"; /-:I-"
e B e -
et~ S - |
T T ST _.-:_-:_’;"‘f/>||':
—z 0k \ _,_,.,-"r .
1 1 S - H J
ol 05 Lo

&

Figure 2, Approximation o (ST times the Free enery per partiele of a svatem with
potentitl encroy parnmwters thae correspond to OO, (see mble 1) (or CO,,
Tem=8T e = 1-00 4] the experimental T is used,)
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BAfLT Btfoe
o VW Var MO VW Var MO
T =075
0-1 —0-55 —0:36 080 ~ 014 — 014 — 030
0-2 —115 —115 —1-48 — 028 — 029 — 049
04 —243 —237 ~ 268 — 064 — {65 — (83
06 ~ 365 ~ 347 -37 —1-07 —1-09 112
08 - 444 — 407 - 447 ~1-62 ~ 165 —1-63
T*=1-15
01 ~ 029 —0-29 —0-38 —~ 000 — 006 009
0-2 — 060 —0-59 —0-7 -012 — 013 — (17
-4 —123 -117 ~1-34 —0:28 —0-29 — (32
06 =13 ~1-57 -1-78 - 047 — 048 — 040
835 =176 —1-38 ~1-78 ~078 —0-80 — 078
T*=133
01 -022 —0-23 -0-29 — 004 — 005 — 006
02 — 045 —0-44 —0-36 — 009 — 009 —012
-4 —0-90 —0-84 - 100 — 020 — (21 —-0-23
07 ~1-26 ~1:03 -1-29 043 44 - (-43
04 ~ 089 — 047 — 091 — 063 — 064 — 063
T*=274
01 —0-02 —o-01 —0-03 -0 ~ - —0-01
132 ~ 003 — 001 ~ 005 ~ 002 — 003 003
04 000 007 — 001 —0:05 — 006 0406
07 037 057 037 —0-11 ~011 —011
0:9 1-04 1-38 104 ~0-16 -017 — 016

Table 10, Comparisons of SAFH and Buif (lor p* =100 ohined from the Verlet—Weis
tpt [14] and the varizgtional methad [16] respectively with Monte Carlo results.

interactions to O{p?) in the Stockmayer potential i.e. the term fuifx in the free
energy defined in (2.11). Since we have already evaluated this term by two
different methods (using MC and VW tpt for o and AZTT rpspectively) we are
able to compare in table 10 our earlier calculations of Aetfe with cur present
estimates derived from the bounds (3.15) and (3.16),  We conclude that although
our upper bounds on the free energy of a Lennard-Jones system are not as ac-
curate as the free energies obtained from VW tpt, the strength of the dipale-
dipele interactions can be assessed to Ofp!) as accurately as in the VW tpt.

We now turn to an investigation of our model polar fluid with finite p* and
@*%.  Although the model is a gross over-simplification of real polar fluids, it i3

adequate for the purpose of estimating the strengths of the various dipole and

multipole interactions and their effect on the free energy. Accordingly, we have
chesen values of ¢ and £ tabulated [28] for O,, Ny, CO, and HCl for study ; the
appropriate Lennard-Jones parameters and multipole moments are in table L.
Higher moments, the effects of polarizability and the non-spherical shapes of the
molecular cores are neglected.  The upper bounds on the free cnergies of these
systemns have been computed with the best ¢'s that correspond to the effective
potential defined in (1.13), i.e. the free energy bounds are the best upper bounds
derived Sfrom the inequality

f_"..j":ﬂ_ Jl-;fus'?"f“"' +I-.1n+l|r.'.r}[1+f.m_ (3177
du

M.P.
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ot o BAfL PAFLTRIC) i PAfLS BAFLINICY
T*=}75 T*#=115
-1 952 — 36l —O-80 no71 — 294 - [ 38
-2 -ag0 —1:152 =148 0-976 — {-504 —0:73
-3 {5 —1-762 —2-10 0-081 - (-850 —1:03
(-4 1-001 -2:373 — 168 (o — 1167 —1-34
0-5 1-005 = 29350 —3-22 G — 1403 ~1-59
06 1006 — 3470 —3-73 0-987 —1-568 —1-78
(63 — — — 0-987 ~ 1612 —1-54
070 1007 —3-871 — 417 (1-986 — 1622 =
7 — — — 49H5 —1-593 - |59
0-80 1-00 — 4070 — 447 0083 —1-317 —
-84 1-003 — 4073 =453 —— —_ e
-85 — — -— [-981 - 1-386 —1:78
050 1000 — 39582 973 —1:192 —
052 (977 —109E —1-56
1-00 (993 — 3300 — 972 —i-576 -
T*=1-35 Te=274
01 (-0 =220 —11-29 0041 — 011 — 0¥
153 971 —0-+41 — 56 [543 — (-{k0E LA LE]
o3 e75 —[-632 8D 543 0018 — 03
o4 977 — 0839 —1- 0945 074 —-01
05 0-979 — (1983 — 116 0944 173 —
n-55 0-979 =103 —1-2Z 0-G44 0247 0-016
6 ik e i (943 (-336 e
a7 0 G7e —1-025 —1:29 0-941 574 037
3 04975 —()-H47 —i-19 -U3E ] 4 %
-9 -070 — 469 091 0933 1-352 1-04
95 (=967 —(-187 T — — -—
1-00 =054 168 — -928 2007 1-58

Tahie 9. Upper hounds for the excess free energy of Lennard-Jones systems compared
with Monte Carlo resules.

L] systems at T* =073, 1-15, 1-35 and 2-74 from (3.5) which can be written in
the form
. [ 08

BAfA(p*, T*}:»_:ﬁﬂ_ﬂ[s{_r]+-§-;% F’Pfu—{"’]-— fﬁﬂﬂi.r}}. (3.15)
The minimum value with respect to ¢ gives the best upper bound. They are
piven in table 9 with the corresponding values of e=¢!’. The bounds are
slightly worse at higher densities than those reported carlier [16] which were
caleulated using approximations for 7,,"%{x) and 7''%(x) obtained by Kozak and
Rice [21] using the PY g'S(r, co}.  We nuxt obtained our best upper bound on
the free enerery of the Stockmayer potential to ({p') by minimizing (3.7) with
respect to e, This may be written in the form

T n.”“".- =
BAfES(p%, T*) < BA[E(x) + LR |:Jrq, .1-‘__!_“ I E.TIIJFE“SI:‘I}]1 (3.16)

s ? '!‘clin -.'TI"

where we recall that y=p**/247*  Our calculutions are as usual for p*=1-U.
The difference berween these two bounds is a2 measure of the dipole-dipole
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Figure 3. Approximation to (kT)~! times the free energy per particle af a system with
petential cnergy perameters that eorrespond to HOC| {see table 1), Fer HCIL
Ter=kTe=1-49,

potential 1o the free enerpy is inadequately deseribed by an cffective arientation-
independent potential that includes only the pair term 7 or @2 while neglect-
ing the ¢, of equation {2.25).  We see further from figure 5 that if a melecule also
nossesses reduced higher moments characteristic of HCI then the contribution
from those moments will also be larpe when only the two-body terms given by
cquations (1.15)={1.17) are included in the cffective potential.  The fact that
these contributions do not turn out to be small perturbations suggests that any
theory that negleets the ¢, for 22 3 of equation (2.20) will prove unequal to the
task of providing a guantitative explanation of the behaviour of molecules like
HCl with relatively strong electric moments.  For systems like O, and N, [30]
(and for molecules with small dipole moments) such a theory seems promising.
For systems with such relatively weak moments, the various contributions to
the free energy can even be accurately assessed from equations (3.10), (3.12}-
(2.14) using our approximations for I8 with ¢=¢™' (given in table 9) rather
than the best ¢'s that correspond to the effective potential in (1.13).

We wish to thank Loup Verlet and I, Schiff for sending us their unpublished
machine computations of the radial distribution functions of hard spheres.

ArPENDIN
Evaluation of the integrais [,'"8x) for n=6, 8, 10, 12, 1§, 24, we define

o

16s)= | g"5( x)ye d, (A1)
|
where y=rfa, x= pa”, ais the diameter of the hard spheres and p is the density of
the system.  From the density expansion of "5y, &) we have

F5(y x)=0, ygl

=1+ EI -.!\Im{_zl'r}"cm: x= 1. l:';'" 1}
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Forn=3
1 u
I_ = A :'__ ]
.-'[-"‘:] “_3+ mg] i I“'F.lul.l‘lf J l"‘ ‘J}
where
S fgu.li:r]y“‘” d y. (A 4)

We evaluated J,, analytically from Kirkwood's [22] result for g,( ¥} and calevlated
Jy and Jy, numerically using the tabulations of g,{y) and gy ) give by Nijbocer
and V anHrwe [23] and by Ree et al. [24] respectively.  This gave us the follow-

ing polynomial approximations to [ (x) for n=6, §, 10, 12, 18, 24: {A5)
18 (xy = &+ 0-225099x + 006643827 + 0-0D0267 9%, (A 6)

LITS(x) = | + 0017344 2% + 0-0832234% + 0-02076 1%, (A7)

L") = 4+ 0139665 + 0033043402 + 0-03 106017, {A5)

1,.78(x) =+ + 0-116298x + 007804457 + 0-03353 7%, (A9

D' ¥ x) =l + 0070070 + U6 1607 = £ 03338147, {A 10

Lo 8 ) = e + 0050693 L+ 0-050743x% - (U3 1477 0™ (A1

We call these collectively the virtal series spproximations e Ox®) for £ {x).

xt MC  Vinial] Error Y Error Padeé Error Pade Error
(1, 314 {2, 2)%

-‘rE H:Z"][.t-':l
O-6684 05158 (5143 0-0015  0-5107  0-0051  0-3132 00026 43143 O-00E5
-7639  0-3361  0-5453 00018 05413 00048 0-5434 00027 05453 0-0018
08594 03791 05776 00015 0-5735 00036 05746 0-0045  0-37706 00013
-8976 05934  0-5909 00025 0-5868 00066 0-3873 00061 0-390% 00023
00358 0-6046 O0-6044 00002 06005 00041 0-6001 00045 06044 00002
-'rl':”s':-"}
06684 02382 02343 00039 0-2319 00062 02372 00010 2390 O-0008
0-7639 02669 (0-2613 00056 (R2SO8 00071 ©-2065  O-0004 2698 (-0G29
O-8504 Q3015 02612 0-0103  O-2918 00103 02996 O-0019  0-3058  (0-004]
08976 O-3174  0-3041 00133 43033 00133 03147 00033 02218 0-0044
9358 03311 03174 00137 03182 00120 0:3293 00018 O-3390 00079

t These values of 2 correspond ro 5 =035, 0-40, 0-35, 47 and 0-4% respectively, where
9 = wpur {6 = il
1 Contribution of 1 +xp(pd+x®md )+ a1} o o), where x= pa™ in which g is the
density and a the hard-sphere diameter.
§ Padé {1, 1) J,"5(x)= b+ [0-22309x/(1 — -295 1502 + 007521200 L Padé (2, 2) 1,100
is oiven in (A 12), Padé (1, 3) Fa'50x) is miven in (A 13L Padé (2, 2):
T, M50 = 4 -+ [{0- 1162984 + (02508801401 — 04533467 .

Our hest Podé npproximants of [0% ) and T V¥ are the expressions piven in (A [2) and
(A 135) respectively. ; ;

Table & 1. Camparison of several approximations to £, ') fm‘ n=0uand 12, with Monte |
Carfo estimates.-




Thermodynamic perturbation theory for simple polar fluids 1413

[n an attempt to extend these results to larger values of x we formed the (1, 3)
and (2, 2) Padé approximants to (1) 71802 —(1/2 - 3}]] and compared them
with caleulations of 7, H3{x} using Monte Carle {(MC) and Percus—Yevick (Y}
values respectively for the radial distnibution functions of hard spheres, The
MO £, V5(x) were obtained using Schiff and Verlet's [12] MC computations for
g8y x) at v =0-6685, 07639, 0.8594, 0-8976 and 0-9353.  Their tabulations of
B p) extend up to v=3, bevond which we assumed a value of unity for

U8y v}, The Percus-Yevick J,"8(x) were obtained by the method First
m.tmﬂucr:a by Frisch e o/ [23]. Ve compare our virial series approximation
and our Padé approximants with the MC and PY values in table A 1 for 1 =6 and
n=12. Our Padé approximants are superior to the resuits obtained from the PY
spproximation,  The astonishing aceuracy of the virial series approximation to
Ofx%) is also worth noting even theugh the radial distribution functions to this
level of approximation are very different from the true values! Our best Padé
approximanacns for 7, 75{x] are

B-223099, + 0-057367 3
I — Q04032330 ;

11734422 4 (0033 Sy at
F8(x) = 1+ 7 x40 ”quSJiL1 (A 13)

IM(x)=}+

(A 12)

1 — 0240402
0-139663 + (-030R05 2

S )= 1+ o

I.l." ,.\.;I' E 1_"‘:' .J..'-I-rEh 1 |: r)
N-116298«

13- ' 0

Iy/'5(x) "%TI D67 1672 + 0 1447632 )

L 007667 0x : (A 16)

% ‘J — (F80353%9x + (- [§1588x%

056931 x
LT £ W S — Al7
dacsslElat +'] — (+891307x + (-241331% L)

The first four of these were used in the computations of the dipole, quadrupaole
and octupele contributions to the free energy reported in the last section,
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[t iz worth noting that detf the two-body b and the three-hady $, will inclucde o term
of O{E9) for molecules with non-zern qiradrupole moment, in conteast 10 the corres-
ponding (") term for dipolar melecules, which comes entirely From e [n the
lwvest-nrider theory in & considered here, one neglects bath contributions of 31y,




