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The application of thermodynamic perturbation theory to the computation
of the properties of simple polar fluids is considered. The Helmholtz free
energy of 2 fluid of molecules interacting via a Stockmayer potential o is
computed through fourth order in g, where p s the dipole moment.
Numerieal results are obtained on the basis of both the *exact' Monte-
Carlo computations for a Lennard—Jones systern and the Verleo-Weis
perturbation-theoretic computations for that systern.  The results ohtained
on the latter basis are then compared with results for a Auid of molecules
interacting via a central-force potential oES that s conformal with the
Lennard-Jones 6-12 potential and equivalent to the Stockmayer potential
through order g*. To facilitate the companson the ©53 results are computed
according to the Verlet-Weis method. The ©55 results and the fourth~
order (in u) % results constitute two differsnt approximations to the thermo-
dynamics of the Stockmaver potential: the compressibility factors as well
as the free encrgics of the two approximations are compared,

It iz concluded that the thermodynamic contribution of the dipole term
of ©9 is significant over the whole liquid region when p®= so?, where ¢ and o
are the usual Lennard—Jones perameters.  For this &, the two approximations
we consider give results in close agrecment. =

1. INTRODUCTION AND GENERAL DISCUSSION

Recently a great deal of progress [1] has been made in applying thermodynamic
perturbation theory (tpt) to a fluid consisting of particles interacting with a
Lennard-Jones pair potential, which can be used to represent the molecular
interaction in Argon and other monatomic fAuids, Much earlier, the application
of tpt to molecules that interact via non-central forces had been considered by
several workers [2, 3] but the lack of accurate expressions for central-force reference
systems severely limited their studies. The recent advances made in connection
with Lennard-Jones molecules have led us to undertake a new investigation of the
application of tpt to the case of non-central pair potentials, which we begin with
this paper.
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A simple way to represent orientation dependence of a potential is to add a
mulupele term or terms—a dipole-dipole term, a dipole—quadrupole term, a
quadrupole—quadrupole term, cte.—to a contribution that depends solely upon
the distance » between molecular centres, such as the Lennard-Jones potential.
Such multipole terms cannot be expected to represent the lack of spherical sym-
metry associated with the highly repulsive core of a somewhat elongated or other-
wise non-spherically-symmetric molecule, and for molecules in which such
asymmetry of the core is a significant feature, one must also introduce the asym-
metry explicitly in the core term. For cores that are not extremely orientation
dependent, one can then perturb [4] off a hard-sphere core in an ' anisotropy
parameter ' as well as in a softness parameter, absorbing the anisotropy as well as
the softness into a judiciously chosen state-dependent sphere diameter. In the
formal development of Part I of this work, however, we shall consider only the
thermodynamic contribution of the multipole terms, and moreover we shall
ignore all polarization effects. (A part of the polarization can be taken into account
immediately albeit unsystematically by using actual multipole moments rather
than the permanent moments in the multipole terms, but we shall not delve into
this question in this paper.) In our numerical caleulations of Part T we further
restrict our attention to the well-known Stockmaver potential, which consists of
a Lennard=Jones term plus an ideal dipole=dipole term,

The paper has three sections hevond this Introduction. In § 2 the formalism
we use is developed. Our starting point is equation (2.4}, a generalization to the

" case of non-central pair forces of an equation that has been previously introduced
elsewhere [3] to relate the Helmholtz free energy and the pair-distribution function.
When expanded in A, a strength parameter associated with the perturbing potential,
the equation immediately yields for polar systems an expansion originally obtained
by Pople [2], and discussed in detail by Rowlinson [6]. The term of order A is
zero, the A*-term is well known. - Here we also give the A-term, which to our
knowledge is a new result.

In §3, we consider some relations peculiar to the Stockmayer potential.
In the special case presented by this potential, conformality arguments [3] enable
one to express the results of lowest-order tpt (which is of fourth order in the dipole
moment @ and which we label with the superscript 5(4)) in terms of the thermo-
dynamic properties of the Lennard-Jones fluid without the introduction of the
Lennard-Jones radial distribution function. Alternatively one can exploit the
existence [7] of an effective potential that is spherically symmetric and thermo-
dynamically equivalent through terms of order u? to the Stockmayer potential.
When terms through order u® are retained in this effective potential, the resulting
expression {which we shall call the effective Stockmayer potential) is conformal
with the Lennard-Jones potential. (We shall label the effective Stockmayer
results with the superscript ES)) If one substitutes an arbitrary higher multipole
term for the dipole-dipole term such conformality arguments are no longer of
much use. Nevertheless the concept of effective potentials that reproduce the
thermodynamics of the polar potentials through lowest order in the relevant
multipole momentz and depend only upon the distance » between molecular
centers can be profitably retained. We exhibit the effective dipole-quadrupole,
quadrupole—guadrupole and dipole—octupole potentials in § 3 for future reference.

In § 4 we give numerical resulis for the Stockmayer potential using the available
Monte-Carlo results [1] for a Lennard-Jones system to assess the excess free
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energy per particle Af for the Stockmayer system through order p. “We then
compute the same quantity, A5, using the Verlet-Weis version [1] of tpt [15]
to treat the Lennard-Jones system, and we compare the result with AfES, the
excess free energy per particle for »™, computed according to the same Verlet—
Weis scheme. In addition we compute the 5(4) and ES compressibility facters
using the Verlet-Weis method. For sufficiently small p2feo® (where e and o are
the usual Lennard—Jones parameters) the 5(4) and ES results must ceincide,
since they are identical through order pd/e?s®. For p*fec®=1, we still find
excellent agreement between the two sets of results,

In Part I1 of this work we shall go on to consider the thermodynamic contribu-
tions associated with the higher multipole moments. In addition, we shall also
continue our study of the thermodynamic properties of the Stockmayer potential.

2. FoRMAL CONSIDERATIONS

In the simplest model of a polar fluid, the pair interaction is approximated by
a point dipole term o” added to a non-polar term @¥. In this case the pair
potential w(r;;, w,, ;) between particles ¢ and j with centres at r; and r; and
angular orientations given by w; and w; can be written as

v(x;, x)=v" +ptl, (2.1}
where x; is the vector (r;, ;) describing both the rotational and transiational
coordinates of the fth particle and 2 is given by

—2cos 8, cos 8;+sim 8 sin 8, cos (¢y— d)

3
ST

wP{x,, x,)= {2.2)
Here p is the dipole moment, = |rz/, #; is the angle made by the dipole of the
ith particle with the line joining the particles, and ¢; is the azimuthal angle made
by the dipole with any plane containing that line. 'We shall assume that dw is
normalized so that [ dw =4,

In applying thermodynamic perturbation theory to any system one begins by
writing the pair potential as a sum of two parts, the choice of which is dictated
by the particular problem at hand,

DXy, Ky} =Xy, Xy) + A(2y, X,). (2.3)

Then if F is the Helmholtz free energy, £, the free energy of the reference system
in which A=0, and a(x,, x,) the two-particle probability distribution function
(such that n(x,, x,)dx,dx, gives the probability of finding a particle with x; in
the element dx, and some other particle with x; in dx,},

F=F+1 I; dA f dxydxyn(Xy, Xy ; AJe(x, X,). {2.4)

" {Our notation differs here from our previous [8] use of F as a free energy density.}
The n(x,, %, ; A) is the n{x;, x,) for the particular value of A being considered in
(2.3) and F, F, and n(x,, x,; A)are all to be evaluated at the same number density
p and temperature T=(8k)~%. By expanding n(x,, X ; A) in powers of A,

n(x;, %, 5 A)=n'0x;, x;) + Antx,, x5)+.., (2.5)

2C2
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and inserting this expression into (2.4), one generates a corresponding A-expansion
of F

F=Fy+ AF 4+ BF.+ ., (2.6)

where

Fi= [ dudan®a, xgulx,, x,). @7

In general, the higher-order terms are of a somewhat complex form when expressed
in terms of s-particle distribution functions, but for certain potentials, such as
the one given by (2.1}, a remarkable simplification takes place. Identifying v™ as
the reference potential ¢, oT as @, and u? as ), one finds that if «¥ depends only
upon ry,, then F, vanishes and F, simplifies, because the spherical-harmonic
expansion of o0 is free of terms of the type X™(r) that give rise to non-zero
contributions [6] upon integration over w; and w,. (See [6] for details.) Thus
the free energy per particle f= F/N reduces to

= fo+ 8o+ o+ Ofuf) R 28y

with ]
e Bp B+ ® 12 dr oo

fo= "W[Eu(ﬁn}[ﬂ {2y, %u)]* dirpodi,dos, _ (2.9)

where g,(r) is the radial distribution function of the reference fluid. In the next
term we have

E z ; X! !
Fo= i | €301 i T X, Ra)o (s, )iy dodng, (2.10)

“where g 15,")(r 5, 715, 70q) I8 the three-particle distribution function of the refarence
fluid. The expression for £, can be further simplified to read

fi= -2 [ ey ar @.11)
; Znfp [
fu= =22 [ gyt ar 2.12)

More general polar potentials than that given by (2.1) can also be treated in the
same way. For example one can include a point dipole—quadrupole term 09,
a point quadrupole-quadrupole term ¢, and a point dipole-octupole term, w0,
and do a multiple perturbation expansion in A =p2, =02 and A, =®* where ¢
is the gquadrupole moment and @ the octupole moment. The generalization of
(2.3)-{2.6) to such an expansion is obvious. One finds, after simplification

F=fotpifet + p20%, 1® + OV, + Y, 4%+, (2.13)

where £+ is the fu of equation (2.9),

-

fe == [ siry-2ar (2.14
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-
f=~ % [ gofryr—1 dr, - (2.15)
Sig#t=— :ﬁ f Folrlr=19 dr, (2.16)

Still higher multipole terms—for example, a quadrupole-octupole term—can
easily be included, but we shall have no cccasion to consider such terms here or

in Part I1.

The expansion for f given by (2.13) was derived by Pople [3] and has been
discussed in detail by Rowlinson [4].. (We know of no previous treatment of
polar fluids in which the explicit form of f; given by (2.10) has appeared, although
Pople [9] derived some time ago a special case of (2.10) in connection with a lattice

system of dipoles.)

3. SPECIFIC PERTURBATION SCHEMES FOR SIMPLE POLAR POTENTIALS

The potential given by (2.1) for the choice in which ¥ is given by (2.2) and
©¥ iz the Lennard-Jfones potential

e[-G] 0 w

was first studied by Stockmayer [10] and bears his name. We shall denote it
by v® and use the superscript S to refer to it. It follows from (2.11) and (2.8)
that, through order u?, the thermodynamics of a Stockmaver system is exactly
equivalent to the thermodynamics of a temperature-dependent potential ©FS,
where

oES — LI 4 HED (3.2)
with
oBD = (43R T )r 8, (3.3)
so that :
oo\ N
o5 4 {(;) —(;) (11 le}, (3.4)

where y(T')=p*/24T* in which the reduced dipole moment p*={(u%e0%'"? and
the reduced temperature T*=%T)e. The v%® is conformal with the Lennard-
Jones potential since (3.4} may be written in the form

e (5 (4)

with ¢’=¢(1+2y)® and o’ =o/(1+2y)'%. From the law of corresponding states
it follows that if 759 is the free energy of the system with potential o5 then

P=S(p, T)_FU(o', T)

NET o NET' +4In (1+2y), (3.6)
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where p'=p/(1+2y)V% and 7= V(1 + 2y Making use of the definition of
the excess free encrgy, AF :
AF(p, T} _Fip, T)
NET = N&T

—lnp+1, : (3.7)

we see that (3.6) may be written in the simpler form

AFTS(p, T) AFW(p, T

NET 7 NET (:5)
For small y, (3.6) reduces to an equation given by Rowlinson [7, 11]
FE8(p, T') FHe', T :
NET =(1+4y) NET X (3.9)

with p'=pf{14y) and T'=T(1-4y). Equation {3.8) also wields on expanding
AFW(p', T')YNET" in a Taylor series in powers of (p'—p) and (T~ T') about its
value at p'=p and T'=T, the result [12] E

ar=o=pr+x [409 -2 1] Lo, (3.10)

where §f=F/NkT and »7 and pL¥ are the excess internal energy per particle and
pressure of the Lennard-Jones system at a density p and temperature T. The
first two terms of (3.10) also give the excess free energy of the Stockmayer system
through order p? exactly, a result which was derived by Zwanzig [3] from the
observation that the integral [ g™ (r)r—%dr can be exactly expressed in terms of
the thermodynamics of the Lennard-Jones system. To so express the integral,
we note that from the development of ‘the last section (with vy =v™ and w=2oED)

BfES _ gLl - % J* £5(r)r=5 dr + O(x2). (311 a)

Comparing (3.10) and (3.11 ) we have
) pEs A
—'Bué-ﬁ ‘ gL dr= |:4-,Suu—@+1:|. {3.1145)
o > I

In computing /% from (3.8), (3.9), or (3.10) one does nat need g4, which would
be required in using (3.11 a). However, the avoidance of gu" afforded by (3.8)-
(3.10) rests upon the oceurrence of the r® that appears in (2.11) and {3.3) and hence
is restricted to the quite special case of the Stockmayer potential.

To compute the compressibility factor pES/kT'n for vF%(r) one has the relation

£ pe ) el T) -
S (35

If one instead differentiates (3.10) in order to find p® to order 4t one needs
(2p™0p)y and (Eu fép) [or (EpTI}5 T'), since p*(Cujep)r=p— T(2p/5T),].
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We note in passing that by applying the Gibbs-Bogolivbav inequality [8] to
a system interacting according to (3.2), in which «! is the reference-system
potential and ®P is the perturbation, we have the inequality

B8 < B + x[48uM — (Bp™ o)+ 1].

It does not follow that 8f9 itzelf is bounded by the right-hand side of the above
inequality, but since f3 and f*9 coincide through first order in y, f® can only
exceed the right-hand side as a result of the effect of non-linear terms in y.

Although neither (3.10) nor (3.8) can be used when v, # o™, or when dipole-
quadrupole effects, quadrupole—quadrupole effects, ete., are included, the concept
of an effective potential that depends only on r is of very general convenience since
regardiess of the exact form of @, it is still true that through order ¥, ©® can be
replaced by the v of (3.3), while the dipole-quadrupole potential ©”% can be
replaced through order p*B® by

FDO - -'LEHH> — 3.13
o ( A (3.13)
The quadrupole—quadrupole ¥9% can be replaced through order &4 by
704
E o [ ) e 1
T (5 = T) ril \ (3.14)
and the dipole-octupole v can be replaced through order p20? by
LTl :
BO _ | g 3.1
7 ( 3&T ) 4 FO

As a result of the preceding obscrvations, if one wishes to investigate the effect
of the potential

g L pD L D@ £NQ 500 {3.16)

through terms of order /'@/®*, 47+ k=4, one can choose instead

B N 4 gED | GEDQ 4 o EQ0 4 4E0D (3.17)

as the assumed potential and then apply any one of the various versions of tpt
recently developed to treat ™. For example, one has the Barker-Henderson
approach, the Mansoori-Canfield, Rasaiah—Stell approach [14], and the Weeks-
Chandler-Andersen approach [15] which has been reassessed and reformulated
by Verlet and Weis [1], and which appears to be the most accurate of the current
perturbative treatments when applied to a Lennard-Jones system,  When applied
to the potential ¢E of {3.17), the reference potential would nof be taken to be ¥
in any one of these approaches. Instead in each one of them the properties of
the full potential is related to those of a hard-sphere system. Of course, if the
potential of (3.17) is taken as the starting point, none of these approaches can be
expected @ priori to vield accurate results beyvond the order p/@/D¥, idj+ k=4,
Furthermore, if @ is chosen to be o™, and (3 and © are zero =o that 2P =wb3,
then none of these approaches can do better than the use of (3.8} with Monte-Carle
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L] resuits, zince this yields essentially exact information for the 53 potential.
An alternative use of tpt in treating the = given by (3.16) consists of taking #¥ as
the reference potential ©, and v— " as @, and treating the attendant problem of
evaluating | ghfr—" dr as a scparate question. For the dipole case of n=6 the
results of §4 show that these two different approaches yield essentially the same
approximation when u2les? £ 1.

The concept of a central-force potential that is thermodynamically equivalent
to o5 through order ' was introduced by Cook and Rowlinson [7]. By using it
in conjunction with conformality arguments of the sort discussed in this section,
they were able to relate, through O(u?), the thermodynamic behaviour of Lennard-
Jones and Stockmayer molecules, prior to the development of the expansion pro-
cedures of [2] and [3].

4. SOME NUMERICAL RESULTS FOR THE STOCKMAYER POTENTIAL

It is convenient to express our results in terms of the dimensionless quantities
T*=kT[eor B*=T*1, p%=pcd, p*2=u2ec® and r*=rjo. It is also convenient
to consider the excess Helmholtz free energy per particle, Af=AF/N, given by

[ | f T -£I|
gaf x
B o 274 _|
x
a
i
g
OF = o ¢ g g =]
4
W o
S %
[ ex 5 = e =
W £ e o x{
ha 5 ;: ng
a,:,"‘n‘ [
—er i x P
x5 :,:"
x ¥
4 @
=]
=L iz
1d x a
o anf o
514 2
=t gaf =
4 i)
X
_G_ =
L
i ! 1 [ |
2 3 =10
,-’O

Figure 1. A comparison of the Monte-Carlo values of the Lennard—[ones free epergy
and the (approximate) Stockmayer free energy when w®*=1. The values, given
for various pe®=p®* at ATfe = T'* egual to 0-73, 1-15, 1-35 and 274, are from Table 1.
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(3.7), rather than f itsell, The contribution ro A3 through order p** can be
writien as

BAFSWI= BAFLT _  wager T (4.1)
where }

J=p* J gLI(r*)r*=5 dr/6. (4.2)

All of our results are given here for u* =1, which represents a value of p that
is typical of molecules with significant dipole moments. We consider the four
reduced temperatures T*=0-75, 1-15, 1-35, and 2-74 in order to facilitate contact
with existing Lennard—Jones results.

In table 1 we give the Monte-Carlo values of BAfLT, B*4J, and
BAfSRI= BAFLT_  #40%2]  The latter equals AAFY through second order in

o BAFLI gest B gaf g*J AAfE
T&—()-75 8_1-13
0-1 — (-80 —0-30 - 1-10 —-0-38 = (0% —0-47
02 — 128 - 040 =197 —-73 —17 - (-90
0-3 ~ 210 - 067 —277 ~ 105 —025 130
0-4 — 2-68 =83 —3-51 —-1-34 —0-32 - —1:66
0-5 - - 322 —0-96 —4-18 = 130 = 40 —1-99
06 — 373 —-1-12 — 485 =178 =149 —2-27
0-63 —1-84 —0-54 —-2-38
0-7 —4-17 - 1:35 w552
075 —1-89 — 063 —-2:54
g - - 47 —1-63 —6-10
© (B4 —4-53 —1-7a —-629
. -5 —1-72 — 78 —2-56
092 —1-3A —{-80 —~ 245
T*=1-35 Te=274
01 —0-29 = -6 —0-35 — 003 —0-01 — 004
-2 —0-56 =012 — (68 = {)-05 =3 — 008
0-3 = (-80} -7 - 097 — 003 — Q04 —0-0g
04 — 1400 —0:23 T —1-23 —10-01 — {6 — 007
0-5 —-116 -{-29 —1-45
0-55 —1-22 —~-32 —1-34 0-06 - 0-08 — 002
0-70 -=1-29 — 43 —-172 0-37 —-011 0-26
0-80 —1-19 —Q-52 -1-71 0-65 —0-14 0-51
-90 — 0 - 063 —1-54 104 —0-16 0-88
0-95 =067 — 69 =136
1-00 158 —0-19 1-39
1-08 .2-16 —-22 1-64
Table 1. Monte-Carlo wvalues of (47} times the Lennard-Jones cxcess Helmboltz
free energy per particle, aleng with DMonte-Carlo wvalues of A% and
BAFSW = GAFLY — posget ] far u*=1. These quantities are given by equations

(4.1) and {4.2) ; AfSH is the excess free energy per particle for a Stockmayer svstem
through fourth order in the dipole moment.
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w*2 evaluated at w*=1. These Monte-Carlo results, denoted by the subscript
mc and taken from [1], are the best estimates available to us and are essenually
exact. The right-hand side of (3.11 &) was used to evaluate %2/ in terms of the
Monte-Carlo results for ™' and p¥.  In figure 1 we show the §Af and BAf5&)
that are given in table 1.

In table 2 we compare SAFE® and BAfS4) which represent two different
approximations to A5 Again we let p*=1 and for reference, we also give
BAFY {to which BAS®S, BAfLI _u*g#%2] and BASS all reduce when p*=0).
For p*=1 we have nao simple and accurate means of using (3.8) to obtain SAfES
directly from the Lennard-Jones Monte-Carlo results at the four temperatures
we have chosen to look at, so we have computed the right-hand side of (3.8)

BAfES BAfSt BA LT BAFES BAfEM pafw

p"‘ iz ez

T*=073 Tr*=113
0-1 — 0680 —0-687 —0-552 — 351 - (0352 —0-293
0-2 —1-423 —1-437 —=1-153 — 726 =729 — 0603 -
03 - 2214 — 2237 - 1-787 - 111G —1-120 =0-923
-4 —=3-{136 =3-06% —2:434 —=1:304 — 13010 —1-212
03 = 3-B66 — 3007 — 3067 =1-871 - 1878 —1-310
-6 — 4671 —4719 — 3649 —2-193 —2-199 —1-F¥i
0-65 —5-051 —5-102 — 3904 —2-326 —2-332 —1-809
G-70 = 5408 = 53+460 =4131 — 2435 —2-440) —~1-859
075 = 5-714 - 53784 —4-313 - 2:-51+ —2-517 —1-874
0-8 — 6019 — o066 — 4442 —2-554 - 2-555 —1-B46
0-85 - 6252 —6-292 —4-505 —2-550 — 2546 —1-767
09 — 6420 — G449 — 4486 — 24490 — 2-451 - 1628
0-95 — 6507 -~ 6518 = 4367 —2:366 —2-3150 = 1418
1-0 — -85 —6-4B0 . —4-128 - 2165 =139 1125
T*=1-15 re=274
01 —10-265 ~ (265 —i0-232 — 0031 —0-031 — 0024
02 —(-545 — 547 —~-455 =56 —0-055 — 0031
03 =~ (-830 —1-833 —(-ai8 = (065 = 0065 = 0-027
0-4 —1-107 —1-110 — -9 —051 - —0051 0-003
0-5 —1-357 —1-361 — 1090 — 003 —-002 0-069
06 =1-558 = 1-562 - 1:218 0095 0-0%3 0184
0-65 - 1632 —1:634 —1-250 0-167 0168 0-269
0-7 —1-681 — 1643 —1:256 0-23% 0259 0372
075 - 1701 =15 -1-219 0-371 0372 0-497
-8 —1-685 -1-684 —1-164 0510 0-511 0-648
0-85 -1-628 —1-624 —1-053 (676 0678 828
09 —1-520 —1-513 —0-B88 0-873 0877 1042
0-95 —1-154 —1-341 — 066D 1-110 1-113 1-293
10 —1-119 —=1-100 =359 1-386 1-390 1-385

Table 2. Comparison of the ES and 5(4) approximations to fAF, where AF is the excess
free energy per particle.  Values are given for the Stockmayer potential ar p®=1
glong with the Lennard=Jones values, which both approximations yield when
p*=0, Fere use has been made of the Verlet-Weis perrurbation treatment in
computing all quantities, as described in § 4.
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according 1o the Verlet~Weis version of perturbation theory instead. (Alterna-
tively the pelynomials given by Levesque and Verlet {1] for SAfLY could be used.)
In order to minimize the cffect of difference between the Monte-Carlo and Verlet-
Weis values of /1 we compare (BAfE9)__ with (3Af1Y9), .. —(w*4f*L]), . rather
than with (BAfL) . —(u*B*%J), .. Here the subscripts vw and me refer to
the use of Verlet-Weis tpt values and Monte-Carlo values, respectively, in the
evaluation of Lennard-Jones quantitics. In fipure 2 we show the SAf™ and

] [ I [ I
o
Baf 274
o .
135
115
...E -
_4_ —
-E L -
L 1
2 -6 0 o~

Figure 2. A comparison of Lennard-Jones and (approximate) Stockmayer free energics
when u*=1, computed by means of the Verlet=Weis perturbation method. The
four pairs of curves {in ascending order) are for £TYe= T* equal to 0475, 1-15, 1-35,
and 274. The values are those of Table 2. The approximate Stockmayer curves
shown are ES curves ; the S(4) curves are virtually the same 2s these on the scale
of thiz graph.

BAfES of rable 2. The BAf%#) curves are not shown, since they are nearly
indistinguishable from the SAf®3 curves. Similarly, the §pF%/p and Bp¥Wiip
isotherms corresponding to these cutves are also nearly indistinguishable from
one another.  In table 3 we give the values of 8p8/p, 8p54)p and SpLI/p obtained
by differentiating the free energies of table 2, and in figure 3 we draw the resulting
Bp™'/p and 8pE9/p curves, which correspond to the free-energy curves of figure 2,
It is clear that the dipole contribution to the equation of state of the Stockmayer
system is large for all but the highest of the four temperatures considered.
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It should be noted that none of our results as they stand indicate the liquid-gas
phase boundary. A double-tangent construction on 3/ or the equivalent Maxwell
construction on fp must be made to locate the co-existence Tegion, which will
include segments of all but the T* =274 isotherm when u*=1. We shall locate
the phase boundaries in Part IT of this work, but it is worth remarking here that
discrepancies between the Monte-Carlo results of table 1 and the tpt results of
table 2 are only substantial in a p*— T* domain that lies within the coexistence
region. Outside of this region the differences are small, for p*=1 as well as for

p¥=10
s BpFSip ApSt | p Aplifp Ap=5/p Bpifp ApIip
a =
T*=075 T*=1-15
01 0-287 0-283 421 0-635 {-633 0696
Q-2 —0-539 - [-559 — 241 0-231 (-226 (366
0-3 ~1-430 —1-440 — {933 —0-174 —0-179 (051
-4 - 2321 —2.355 —1-580 —0-523 -n527 © —O-188
0-5 = 3114 —3-136 — 2070 — {744 — 0746 — {370
06 . =367 —3-716 - 2239 —0-721 =730 = {076
063 — 3798 —3-842 =2131 =0-573 — 0585 0-174
07 — 3782 — 3812 —1-843 —{302 —-314 0-562
75 - 3574 —3-580 —1-325 0123 0116 1-118
- B =3-139 —30% —-(r519 735 741 1-579
85 -4 - —2279 0645 1:576 1-603 1-889
9 —1-293 - 1064 2-3144 2:690 2740 4186
83 0-274 0-640 +-368 4-123 4-222 5-B23
10 2.38% 2.089 7092 5-931 6-102 7-832
T*=135 T*=274

01 0-726 0-724 0771 0971 0970 0-983
02 0-430 0425 0-530 963 095+ 0-990
03 0-150 0148 0-316 1-001 1-00+ 1-046
-4 —0-066 — (067 0-182 11118 1-119 1-184
05 —0-147 —0-150 0-202 1-336 1-352 1-449
06 0-005 — 0004 0-480 1773 1760 1-899
63 0-210 158 0-759 2072 2054 2-217
07 0-528 514 1-161 2-447 2-424 2613
073 0-085 0971 1-713 2900 2:-882 3-099
0-8 1-612 1601 2-447 3474 34440 1-689
0-83 2-442 2438 3394 +-156 4111 4-400
09 3-510 3520 4-590 4072 4-408 5-246
0-95 +:856 4350 G075 S-938 3840 6243
10 6-320 G603 TEI6 T-163 6360 7-403

Table 3. Comparison of the ES and 5(4) approximate compressibiity factors for the
Stockmayer potential at p¥* =1, along with the Lennard-Jones factor to which they
reduce when p*=0. Here use has been made of the Verlet-Weis perturbation
treatment in computiog all quantities, as described in § 4.
tion of A% was donc by differentiating polynomials in g fitted for cach termpera-
ture ; care waos taken to minimize firting errors bur they probably contribute as
much to the small differences between the (8p/p)=5 and (8p/g)** values shown as

do the true differences.)

{"T'he reguired differentia-




Thermodynamic perturbation theory for simple polar fluids 45

QOur two main conclusions are the following: (i) for a potental in which
pw* =1, the thermodynamic contribution of the dipole interaction must be taken
into consideration with care in any accurate theory of the liquid state of polar
molecules, since the contribution will be a significant part of the effect of the inter-
action potential in the liquid region ; and (if) for p* < 1, the S{4) and ES expressions
that give approximations to the Stockmayer thermodynamics in terms of the
Lennard-Jones thermodynamics yield nearly identical results. Thus the choice
between them in any particular application involving this range of p* can be
dictated largely by matters of convenience,

] [ I I T

= s PR - =
Bple | —— 8P ¥e !
5 i

_3 =
1 1
-2 -5 # |0
SIS P
Figure 3. A comparison of the Lennard-Jones and approximate Stockmayer compressi-
hility factors where p*=1, computed by means of the Verlet—Weis perturbation

method. The four pairs of curves {in ascending order) are for AT/e =T equal to
0-75, 115, 1-35 and 274, The values are those of Table 3. The approximate
Srockmaver curves are ES curves ; the 5(4) curves are vireaally the same (except
for T* =075 and high p*).

In closing, we wish to call attention to the extreme sensitivity of the thermo-
dynamic contribution of the dipole to the value of 1*, owing to the fourth power
of w* that appears in the lowest-order dipole term. If one considers p* =3
instead of u*=1, the thermedynamic contribution of the dipele interaction s

almost negligible for all but the lowest of the temperatures wi have considered here.
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