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The general solutions obtained earlier [J. Chem. Phys. 95, 3325 ( 1991) ] for the coupled 
diffusion-reaction equations describing reversible electron transfer reactions in Debye solvents, 
governed by Sumi-Marcus free energy surfaces, are extended to non-Debye solvents. These 
solutions, which depend on the time correlation function of the reaction coordinate A(t), are 
exact in the narrow and wide window limits for Debye and non-Debye solvents and also in the 
slow reaction and non-diffusion limits for Debye solvents. The general solution also predicts 
the behavior between these limits and can be obtained as the solution to an integral equation. 
An iterative method of solving this equation using an effective relaxation time is discussed. The 
relationship between A(t) and the time correlation function S(t) of Born solvation energy of 
the reacting intermediates is elucidated. 

I. INTRODUCTION 

In a previous study,’ an approximate general solution 
was obtained for two coupled diffusion-reaction equations 
governing reversible electron transfer (ET) reactions in a 
Debye solvent which are characterized by a single dielectric 
relaxation time. The solutions for reversible and nonreversi- 
ble electron transfer reactions in Debye solvents have four 
limits;“* the narrow and wide reaction window limits, as well 
as the slow reaction and nondiJiision limits. Solvent dynam- 
ics play an important role in these reactions except in the 
slow reaction and wide window limits, when it can be ne- 
glected. In this paper we extend our theoretical analysis of 
reversible ET reactions to non-Debye solvents which are 
characterized by multiple dielectric relaxation times. 

The free energy surface used in our earlier work was 
suggested by Sumi and Marcus* and includes contributions 
from solvent reorganization and ligand vibrations of the 
reacting species. The model is similar to the one introduced 
earlier by Kestner, Logan, and Jortner3 who treated the 
problem quantum mechanically without reference to the sol- 
vent dynamics. Sumi and Marcus’ original discussion’ of ET 
reactions in Debye solvents ignored the reverse reaction 
which simplified the mathematical analysis. However, the 
presence of a finite barrier for the reverse reaction’ and the 
existence of multiple relaxation times for the solvent in 
which the reactions often take place4 can have a significant 
effect on the rates of these reactions. In an earlier paper we 
addressed the problem of including reversibility in the analy- 
sis of ET reactions in Debye solvents; here we consider the 
analysis the same reactions in non-Debye solvents which ex- 
hibit multiple relaxation times. The task of linking solvent 
relaxation in non-Debye solvents with the kinetics of reversi- 
ble electron transfer reactions in these solvents is greatly 
simplified by the existence of a close relationship between 
the time correlation function s(t) for the free energy of sol- 
vation of the reacting intermediates and the time correlation 
function A(t) of the reaction coordinate for the ET reaction. 
This is also discussed at length in this paper. 

” Present address: Department of Chemistry, Michigan State University, 
East Lansing, Michigan 48824. 

The dynamics of electron transfer reactions have been 
studied by many workers’-‘* who considered primarily the 
contribution of solvent reorganization to the free energy of 
activation. It is well known that electron transfer dynamics 
in Debye solvents are governed by the longitudinal relaxa- 
tion time rL .4(d) Quite typically in non-Debye solvents how- 
ever, the time correlation function A ( t) of the reaction coor- 
dinate appears instead of e - r’7.’ (where f is the elapsed time) 
in the expressions for the survival probabilities of the react- 
ing species in ET reactions. This was shown by Hynes8(a) 
who studied single outer-sphere electron transfer reactions 
and by Fonseca8’b’ who investigated the corresponding re- 
versible reactions. Our analysis however deals with reversi- 
ble ET reactions described by the Sumi-Marcus free energy 
surface. This considers ligand vibrational contributions as 
well as contributions from fluctuations in the solvent polar- 
ization to the activation energy of the reacting species. We 
find that the time correlation function along the reaction 
coordinate A(t) continues to play a key role in the dynamics 
of these model reactions and that an approximate solution 
for the survival probabilites of reactants and products is ob- 
tained by the substitution of A(t) for e - r’r’ in the expres- 
sions we have derived previously for the survival probabili- 
ties in Debye solvents.’ We also show that in this model this 
substitution is exact for non-Debye solvents in the narrow 
and wide reaction window limits. 

By applying linear response theory to the dynamics of 
ET reactions in continuum solvents, we find that A(t) is 
identical to the time correlation function .9(t) of the free 
energy of solvation of the reacting intermediates. This is so 
even when the solvent displays multiple relaxation times 
which are typical of non-Debye solvents4 and are readily 
observed and measured in time-dependent fluorescence 
Stokes (TDFS) shift experiments.‘3-15 This identity pro- 
vides a useful link between TDFS experiments and the mea- 
sured rates of electron transfer reactions in the same solvent. 

Our paper is organized as follows. The Sumi-Marcus 
free energy surface, the general reaction diffusion equations 
and a summary of pertinent results for reversible electron 
transfer reactions in Debye solvents are given in Sec. II. In 
Sec. III we discuss the dynamics of the polarization coordi- 
nate and in Sec. IV we present our results for reversible ET 
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reactions in non-Debye solvents as the solution to an integral 
equation for the survival probabilities. Methods of solving 
these integral equations are treated in Sec. V followed by a 
short discussion in Sec. VI. An Appendix examines the time 
correlation function S(t) of the Born solvation free energy 
for the reacting intermediates and its relationship to A(t) . 

k,(x) = vq exp[ -/?AG:(x)] (i = 1,2), (2.8) 
in which 

AG:(x) = (l/2) (no//z,) (x - xi= )2, 

AG:(x) = (1/2)(R,/;1,)(x-~~,)~, 
are the free energies of activation, and 

II. FREE ENERGY SURFACES AND SOLUTIONS OF THE 
DIFFUSION-REACTION EQUATIONS FOR ELECTRON 
TRANSFER IN DEBYE SOLVENTS 
A. Potential surfaces and diffusion-reaction equations 

The Sumi-Marcus ‘(*) free energy surfaces for reactants 
and products are 

V, (4,x) = aq2/2 + x2/2, (2.la) 

V,(q,x) =a(q-qO)2/2+ (x-x~)~/~+AGO, (2.lb) 
where q and x are the vibrational and polarization coordi- 
nates, respectively, a = ,uw2 is assumed to be the same for 
reactants and products (,u is the reduced mass and w is the 
vibrational frequency of the ligand), AGO is the reaction free 
energy and the coordinate x is related to the outer solvent 
polarization P”( r ) by’ 

x2 = (47r/c) 
s 

IPex(r) - Pyex(r>j2 dr, (2.2a) 

where 

Pex(r) = P(r) -P”(r). (2.2b) 

P(r) and P”(r) are the total polarization and electronic 
polarization respectively of the solvent, while Ppex( r) is the 
equilibrium value of this polarization at r due to the charge 
distribution of the reactants. Both P”(r) and P?“(r) can 
have contributions from the translation and rotation of the 
solvent molecules. In Eq. (2.2a), 

c = l/E, - l/e, (2.3) 
and aqi/2 and xz/2 in Eq. (2.1 b) are contributions from 
intramolecular ligand vibration and outer solvent polariza- 
tion, respectively, to the reorganization energy. The total 
reorganization energy is the sum of these 

A =A, +A,, (2.4) 
with 

(2.9a) 

(2.9b) 

X Ic = (A + AG”)/(2& ) 1’2, (2.9~) 

X 2c = (A + AGO - U,)/(Uo)“2. (2.9d) 

The normalization constant in Eq. (2.8) 

vq = k,, [ 27rA,/(PA, ) ] - 1’2, (2.10) 

where k, is determined by whether the reaction is adiabatic 
or nonadiabatic.’ In the narrow reaction window limit when 
h, -0 the vibrational contribution to the reorganization en- 
ergy is neglected and the rate coefficients are approximated 
by delta functions’ 

k(x) = k, (x) = k,(x) = k,S(x -x,), 
where 

(2.11a) 

x, = (A, + AGo)/(Uo)1’2 (2.11b) 

is identical to xlC and x2C in this limit. 
The time dependence of reversible ET reactions is de- 

scribed by the following coupled diffusion reaction equa- 
tions: 

aP,/at = [L, (0 - k, (x)]P, + k, (x)P,, (2.12a) 

ap2/at= [w) - k2(X)]P2 + k,(X)&, (2.12b) 

where P, = P, (x,t) and P2 = P2 (x,t) are the probabilities 
of reactants and products, respectively, L, (t) and L, (t) are 
generalized Fokker-Planck operators defined by 

Li = D(t) $ +PD(t) 2 (i= 1,2), 

(2.13) 
in which D(t) is a time dependent diffusion coefficient, 
p= (k,7’-‘wherek, is Boltzman constant, Tis tempera- 
ture and V, (x) is given by the second term of Eq. (2.1)) i.e., 

v, (x) = x2/2, (2.14a) 

v2 6) = (x - x0 )2/2 + AGO. (2.14b) 

ilo = xz/2 = (27r/c) IPTex(r) - P?(r) I2 dr (2Sa) 

= (c/837) ID:(r) -Dy(r)I’dr, 
s 

(2.5b) 

A, = aq2/2, (2.6) 
where P?ex (r) is the equilibrium polarization at r due to the 
charge distribution of the products and the relation 

POvex(r) = (c/4rr)D”(r) (2.7) 
between the equilibrium polarization peeX( r) and the elec- 
tric displacement Do(r) has been used. 

The ligand vibrational motion is much faster than the 
relaxation of the solvent polarization and electron transfer 
can take place at each value of x, leading to coordinate de- 
pendent rate coefficients’-3 

The structure of the diffusion reaction Eqs. (2.12) is strik- 
ing: the diffusion terms describe the diffusion of the polariza- 
tion coordinate x, while the reaction terms ki (x) are rate 
coefficients averaged over the vibrational coordinate q at a 
particular x. The reactants are initially considered to be at 
thermal equilibrium, so that 

P~(x~o)=exP[ -W,(x)]/[exp[ -pV,(x)]dx, 
J 

(2.15a) 
P2 (x,0) = 0. (2.15b) 

The survival probabilities Q, (t) for the reactants and prod- 
ucts are obtained from the solutions of Eq. (2.12) by 

‘- Q,(t) = 
s 

Pi(x,t)dx (i= 1,2). (2.16) 
-co 
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B. The solutions in a Debye solvent 

In a Debye solvent, the diffusion constant is time inde- 
pendent and D(t) = D is related to the longitudinal dielec- 
tric relaxation time ~~ byle3 

rL = (e,/eO)rD = (BD) -‘, (2.17) 

where TV is Debye relaxation time, and E, and E,, are the 
high frequency and static dielectric constants, respectively. 
In our previous paper we showed that an approximate but 
general solution of Eq. (2.12) for a Debye solvent leads to 
the Laplace transforms of the survival probabilities given 
by’ 

91 (s) = 11s - Q2 (s), (2.18a) 

Q2 (~1 = k,,/CsZ[ 1 + asI (s) + as2 (s) ] 1. (2.18b) 
Here the Laplace transform asi (s) is defined by 

a,(s) =ki~‘(giIki(s+Hi)-‘kilgi) (i= 1,2) (2.19a) 
with 

k, = (gi(X)lki(x)lgi(x))* 
The operator 

(2.19b) 

(2.20) 
is similar to the Hamiltonian operator for a harmonic oscil- 
lator with potentials given in Eq. (2.14). The eigenvalues are 

E, = nr,’ (n = 0,1,2,...) (2.21) 
and Iu,,,) are the eigenkets of Hi with eigenfunctions E, 
which implies that Hi Iu,,~) = E, Iu,,~). There is no zero 
point energy and the lowest order eigenfunction 

I%,,) = g, 0) 

= exp( -fiv, (X)/2)/ s 
eXp( -fiv, (X)/2)dx 

(2.22) 
so that H,g, (x) = 0. Inserting Eq. (2.22) into Eq. (2.19) 
and making use of Eqs. (2.8)-( 2.10) one finds 

k,, = vexp[ -p(n + AG0)2/4A 1, (2.23a) 

k,, = 4, exp[BAG’l, (2.23b) 

where I’ = I’~ [/2,/A ] 1’2 For a Debye solvent \;e have . 
shown that’ 

a,,(s) =kip’ 2 c,,~(s+E,,)-’ (i= 1,2), (2.24a) 
t l=O 

where cn,, = (u,,, I ki lgi)2. The inverse Laplace transform of 
Eq. (2.24a) is 

a,(t) =kie +kie’ C c,.i exp( - e,t) (i= 1,2), 
“=l 

(2.24b) 
which can be written in closed form by making use of the 
density matrix of the Harmonic oscillator,‘P2 

a,(t) =k,,(l -,42e-2f’rL)-“2 

X-p Pxi, 
[ 

A 2e- f/TL 

I 
1 +Ae-‘/‘L ’ (2.25a) 
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a 2 (t) = k 2e (1 --A 2e-2z’7’ > -“2 

Xexp PCx,, - X, I2 

A 2,-r/r, 1 1 +Ae-‘/‘L * 
(2.25b) 

Here 

A = il,/;l (2.26) 

reflects the size of the reaction window. For example, in the 
narrow window limit, il, gil, and AZ 1 while in the wide 
window limit, il, )A,, AzO. The generalization to non-De- 
bye solvents is discussed in Sec. IV but before that we will 
review certain limiting cases of importance to our analysis. 

Equation (2.18), with ai (t) displayed in Eq. (2.25) or 
(2.24), become exact in different limits. In the slow reaction 
limit ( ki (x) Q T= ), thermal equilibrium of the polarization 
coordinate x is always maintained and the time scale in 
which the reaction takes place is much larger than T=. It 
follows from Eq. (2.2) that ai (t) = k, which is equivalent 
to aSi (s) = k,/s. Substituting in Eq. (2.18) and taking the 
inverse Laplace transform we have 

Q, (t) = 1 - Q2 (t), (2.27a) 

Q,(t) = [k,,/(k’, +k,,)]Cl --xp[ - (k,, +k2e)tl)- 
(2.27b) 

In the wide reaction window limit (R,)/2,), A = 0 and 
asi (s) = k,/s where ki has the same form as Eq. (2.23) with 
v = v4 and R = ;1,. The survival probabilities are the same as 
Eqs. (2.27) with ki replacing k,. In the narrow reaction 
window limit (il, <il, ), A = 1, and Eqs. (2.12) reduce to’ 

ap,/at=L,p, - k,S(x-x,)(p, -P,), (2.28a) 

ap,/at=L,p, +ko6(x-~,)(~, -P,), (2.28b) 

where x, = (A0 + AG ‘)/( W, ) “2. The Laplace transforms 
of the survival probalities are’ 

Q,(s) =s-'-Q,(s), (2.29a) 

Q2 (s) = koP, (x,,O)/{?[ 1 + k,G,, (xclx,,s) 

+ ko G,, (x, - xo Ix, - xc, ,s) ] 1, (2.29b) 

where k, G,, (x, Ix,,s) and k, G,, (x, - x0 Ix, - xo,s) are 
precisely the Laplace transforms of a’ ( t) and a, ( t), respec- 
tively, with A = 1. Equations (2.29) are exact but have been 
solved’ only in certain approximations or limits. Examples 
are the long and short time approximations and barrierless 
reactions.’ In the nondiffusion limit ki (x) )r L ’ and the 
survival probabilities show a multiexponential time depend- 
ence which is discussed in detail in Ref. 1. 

Away from these limits an interpolation formula be- 
tween the long and short time limits of ai (t) leads to an 
expression which reproduces different types of single expo- 
nential time dependences found for the survival probabili- 
ties. This expression has the same form as Eq. (2.27) except 
that k, is replaced by k i = k,/a, where 

a = 1 + a, rL/lxlc I + a,~Jx,, -x0 I (2.30) 

and a, and a2 are constants.’ It is seen that a, = a2 = 0 in 
the slow reaction limit and a’ = a, = 1 in the narrow reac- 
tion window limit.’ Multiexponential time dependence of 
the survival probabilities is found when terms beyond the 
leading term in the expansion of aSi (s) are taken into ac- 
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count. Explicit expressions for the time dependence of the 
survival probabilites are given in Ref. 1. Numerical solutions 
of the reaction-diffusion equations were found to agree satis- 
factorily with the analytic results.’ 

For a non-Debye solvent, the diffusion operators are 
generally time dependent, and the solution of Eq. (2.12) 
becomes more involved. We show in Sec. IV that Eq. (2.29) 
is exact in the narrow reaction window limit (A = 1) with 
kOGi(x,Ix,,t) = a,(t) of Eq. (2.25) except that e-“‘& is 
replaced by A(t), the time correlation function of the reac- 
tion coordinate. More generally, when A # 1, we find that 
Eqs. (2.18) is a useful solution to Eq. (2.12) for non-Debye 
solvents provided aj (t) is similarly redefined with A(t) re- 
placing e - “” in the expressions for ai (t) given in Eq. 
(2.25). However, the interpolation formula and other ap- 
proximations discussed in the previous paragraph can be 
carried over to non-Debye solvents only if we use an effective 
relaxation time r ‘,” to characterize A(t) . This is discussed in 
the next section where we investigate the dynamics of the 
polarization coordinate x. 

Ill. DYNAMICS OF THE POLARIZATION COORDlNATEx 

Before we consider the solution of Eq. (2.12) for ET in 
non-Debye solvents, we will first describe the dynamics of 
the polarization coordinate x when the the vibrational coor- 
dinate q is neglected. This should help to clarify our argu- 
ment without the added complication of ligand or inner sol- 
vation shell vibration. 

During electron transfer of the reacting intermediates, 
the polarization coordinate x at time t takes on a value 

X2(t) = (4r/c) 
s 

IPex(r,f) - PyeX(r) I2 dr, (3.1) 

which is an obvious extension of Eq. (2.2). The time depen- 
dent polarization Pex(r,t) is linearly related to the “effec- 
tive” charges eFff(t) on the ions with which it would be in 
equilibrium and 

eTff(t) =et+z(t)(e, -e:) (i= 1,2), (3.2) 
where e: and ei are the charges on the reactant and products, 
respectively, and z(t) changes from 0 to 1 as reactants are 
completely transformed into products. It follows that at any 
time t, 

P”(r,t) - Pyex(r) =z(t) [P?“(r) - PTex(r)]. (3.3) 
Equation (3.3) simply mirrors (Eq. 3.2). Inserting this in 
Eq. (3.1) and using Eqs. (2.3), (2.5), (2.7), and (2.14a), 
we see that the potential energy for the reactants is given by 

v, = x2(t)/2 =&Z(t), (3.4a) 
where il,, is defined in Eq. (2.5). Likewise for the product 
potential energy, given in Eq. (2.14b), we have 

I’, = (1/2)[x(t) -x~]~+AG’ 

=A,[1 -z(t)12+AGo. (3.4b) 
The second of these relations in each of these equations has 
also been derived by Hynes.‘(=) 

Linear response theory predicts that the nonequilibrium 
dielectric polarization PeX(r,t) is related to the displacement 
field D( r,t) by16 
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P”( r,t) = (47r) - ’ c(t - T)D(r,t)dT 

I f = (47r)-’ c(r)D(r,t - T)dr. (3.5) 
--m 

The response function c(t) has the Laplace transform 

c(s) = l/E, - l/E(S), (3.6a) 

where E, is the high frequency dielectric constant and E(S) 
is the frequency dependent dielectric function. If 
D(r,t-r) =D’(r) for t>O and is zero for t<O, 
P”(r,t) +Pex(r) as t+ CO, and Eq. (3.5) reduces to Eq. 
(2.7). It follows from this that 

s 

m 

c= l/E, - l/E= c(T)dT. (3.6b) 
0 

In a Debye solvent 

E(S) = E, + (60 -E&,)/(1 $S7D). (3.7) 
Inserting this in Eq. ( 10.1.6a), taking the inverse Laplace 
transform and recalling the definition of the longitudinal re- 
laxation time r, = E, .rD/eo one finds 

c(t) = (c/7;) exp( - t/rL), (3.8) 
which is the response function for a Debye solvent.‘6 

We now consider a thought experiment, similar to one 
suggested by Hynes,*(‘) in which we start with the reactant 
charge distribution and let it be transformed instantaneously 
at t = 0 to the product charge distribution. The medium 
then rearranges by translation and rotation to a new charge 
distribution. The change in the solvent polarization with 
time is 

I 
f 

PeX(r,t) - P?(r) = (4rr) -’ c(T)dT + 
0 

X [D:(r) -D?(r)], 
which on combining with Eq. (3.1) gives 

(3.9) 

x(t) =xoc- * [I’Wdr] , (3.10) 

where x0 =x( CO) = (U,) “2. This equation is equivalent 
toHynes’Eq. (2.12) forz(t). s(a) The Laplace transform of 
Eq. (3.10) gives 

x(s) = x0 (cs) - lc(s) = x0 (a) - 1 [ l/E, - l/E(S) 1. 
(3.11) 

Defining the deviation 8x(t) = x(t) - x0, it follows 
that the normalized time correlation function 

A(t) = (~x(t)~x(0))/(~x2(O)) 

= - (sxct,)/x, 

= -c-l [lc(T)dT] + 1, 

(3.12a) 

(3.12b) 

(3.12~) 

where we have made use of the fact that 8x( 0) = 
6x2(O) = xi. 

- x0 and 
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On taking the Laplace transforms one finds that 

6x(s) = (x0/s) [c(s)/c - l] (3.13) 

and 

A(s) = (I/s) [ 1 - c(s)/cl (3.14a) 

= E, [ (60 - E(S) )/(qJ - E, 1 ]/(sds) 1 (3.14b) 

= E, [ 1 - B(s) l/b[ 6, + E(s) (63 - E, )]I, 
(3.14c) 

where 

E(s) = [E(S) -E, ]/(Eo - E, ). (3.15) 

Equation (3.14c) for the forward reaction which has been 
derived earlier by Hynes. ‘(*) If we define the reaction coor- 
dinate x’(t) = x0 - x(t) for the backward reaction, a simi- 
lar equation can be written for Sx’( t). For a Debye solvent, it 
follows from Eqs. (3.7), (3.14), and (3.15) that 

E(s) = l/(1 +sro), (3.16) 

or t ht ~v~I”~p~~ei t!r ais form 

(3.17) 

A(r) = exp( - t/rL). (3.18) 

Non-Debye solvents are characterized by a frequency de- 
pendent longitudinal dielectric relaxation time, when r ; ’ 
in Eq, (3.17) is replaced by a “frequency dependent” 
r,(s) - ‘. 

In the Appendix we show that in a continuum solvent, 
A(t) is identical to the time correlation function S(t) of the 
Born solvation energy for the reacting species. This provides 
another source of information on A(t) since there are experi- 
mental probes which determine S(t); for example, time-de- 
pendent fluorescence Stokes shift measurements 
(TDFS).i3-I5 

The dynamics of the reaction coordinate can be studied 
using either a Langevin-type equation or a probability diffu- 
sion equation. In Sec. II the Fokker-Planck diffusion equa- 
tion was used to describe the dynamics of the polarization 
coordinate x in Debye solvents. This is, as discussed below, 
consistent with the use of the Langevin equation in the over- 
damped limit. For non-Debye solvents one uses either a gen- 
eralized Fokker-Planck equation or a generalized Langevin 
equation. The two approaches are equivalent, but the former 
provides a natural extension of our previous discussion’ of 
reversible electron transfer reactions to non-Debye solvents. 
Since the polarization coordinate x(t) is related to Hynes’ 
reaction coordinate z(t) through Eq. (3.4)) the discussion 
which follows in this section is similar to his.*(@ 

A. Generalized Langevin equation approach 
For non-Debye solvents the generalized Langevin equa- 

tion for Sx( t) is 

d’[Sx(t)]/dt’= -&6x(t) - 
s 

‘c(t - T)&x(T)d?; 
0 

(3.19) 

where Sx( t) = d[ Sx( t) ]/dt, c(t) is the frequency depen- 
dent friction and wL is given by wi = l/m,, which follows 
from the harmonic potential given in Eq. (3.4), and mL is 

the reduced mass. On taking the Laplace transform of Eq. 
(3.19) and using Eq. (3.12a) we have 

A(s) = s + S(s) 
s2+w: +gcs, * 

(3.20) 

In the overdamped limit d 2 [6x( t) ] /dt 2 = 0 we have, in- 
stead of Eqs. (3.20)) the relation 

A(s) = [s+r~l(s)] -I, (3.21) 

where the frequency dependent longitudinal dielectric relax- 
ation time rr. (s) is defined by8 rL (s) = &s)/wL. By com- 
paring Eq. (3.21) with Eq. (3.14) one finds that’ 

7L(S) = E, [l - E(S)l/[S~oE(S)], (3.22) 

which provides a relation, in the overdamped limit, between 
the rL (s) and the measured dielectric response function 
E(s). The relationship between A(s) and E(s) follows from 
Eq. (3.23). For Debye solvents E(s) is given by Eq. (3.16) 
and we see that rL (s) = E, rD/eo = rL, which is indepen- 
dent of the frequency. For non-Debye solvents with multiple 
dielectric relaxation times 

E(s) =CA(l +S7i)-1, (3.23) 
i 

where A is a constant, the inverse of Eq. (3.23) becomes 
more complicated than that of Eq. (3.16). For instance, a 
double exponential form has been used by HynessCa) for 
A(t) in n-propyl alcohol to reproduce the dielectric relaxa- 
tion data. 

B. The Fokker-Planck equation approach 

For a non-Debye solvent, the generalized diffusion 
equations with no reaction are 

JPi(x,t)/&=Li(t)P,(x,t) (i= 1,2), (3.24) 

where the generalized Fokker-Planck operator Li ( f ) is giv- 
en in Eq. (2.9). The solutions of Eq. (3.24) for parabolic 
potential wells are well known’ and are 

P, (XJ) = [ 2rk, T( 1 - A2) ] - “’ 

P(x - x(0)N2 1 2(1-A’) ’ 
(3.25a) 

p2 (x,t> = [ 2z-k, T( 1 - A2) ] - “2 

Xexp - 
I 

B[(x-x0) - (x(O) -x,)A]’ 
2( 1 - A2) I 

, 

(3.25b) 

where x ( 0) is the initial value of x, and A = A(t) is related to 
the diffusion constant by 

D(t) = -fi -‘d [In A(t)]/dt. (3.26) 
This solution is easily verified by direct substitution.““’ For 
a Debye solvent A(t) is given, in the overdamped limit, by 
Eq. (3.18) and we have 

D(t) = D = (&‘ ) - I, (3.27) 

which is independent of time and is just the result given in 
Eq. (2.17). This implies that the solutions given in reference 
1 for ET reactions in Debye solvents using Fokker-Planck 
operators with a constant diffusion coefficient D are consis- 
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tent with the simple Langevin equation in the overdamped 
limit. 

IV. SOLUTIONS OF THE GENERALIZED DIFFUSION- 
REACTION EQUATIONS FOR REVERSIBLE ET 
REACTIONS IN NON-DEBYE SOLVENTS 

For non-Debye solvents, we need to solve Eq. (2.12) 
together with the initial conditions Eqs. (2.15). Since the 
diffusion coefficient D and the longitudinal relaxation time 
rL are now frequency dependent, the slow diffusion and slow 
reaction limits are not clearly defined unless we can identify 
an effective D and rt, but the narrow and wide reaction 
window limits still hold. We will first discuss the exact solu- 
tions in these two limits before considering the solutions for 
the general case. 

are exact for non-Debye solvents. They have been given ear- 
lier by Fonseca 8(b) but the argument used in its derivation 
here is exact since we do not replace Li( t) by an effective 
time independent operator L rff to prove this result, see Ref. 
8(b). It is seen that the generalized Green’s functions de- 
pend on the time correlation function A(t) of the reaction 
coordinate which was discussed extensively in the preceding 
section. For Debye solvents the Green’s functions reduce to 
ai (t), defined in Eq. (2.25)) divided by k, as discussed in 
sec. II. 

B. Approximate solutions to the generalized diffusion 
reaction equations 

A. Solutions in the wide and narrow window limits 
In the wide window limit, one can still use the same 

argument given in Ref. 1 for Debye solvents and the solu- 
tions, for the survival probabilities, are single exponentials 

Q, (t) = 1 - C?,(t), (4.la) 

Q2(t) = [k,/(k, +k,)]{l -exp[ -(k, +k,)t]), 
(4.lb) 

with 

k, = vq exp[ -P(A, + AG’)‘/4;1,], (4.2a) 

k, = k, exp[flAGO]. (4.2b) 
In the narrow reaction window limit, Elqs. (2.12) reduce to’ 

aP,/at=L,(t)P, -k,S(x-xx,)(P, -P2), (4.3a) 
aP,/Jt=L,(t)P, +k,S(x-xx,)(P, -P,), (4.3b) 

where x, is given by Eq. (2.1 lb). The Laplace transforms of 
the survival probalities are given by Eq. (2.29) where the 
Green’s functions G, (x, Ix,,s) and G, (x, - x0 Ix, - x0 ,s) 
are now the Laplace transforms of the solutions to thegener- 
alized diffusion equations 

We now come to our discussion of approximate general 
solutions of the reaction diffusion equations (2.12) in non- 
Debye solvents. Because the generalized Fokker-Planck op- 
erators are time dependent, the Laplace transform technique 
used in Ref. 1 becomes too complicated to use. This diffi- 
culty can be formally avoided by replacing the generalized 
Fokker-Planck operators by effective operators L 5” in 
which the effective diffusion constant Deff is time indepen- 
dent. This argument was used by FonsecasCb’ in deriving 
Eqs. (4.6) which we have shown to be exact. The use of 
operators L Tff instead of Li implies that Hi defined in Eq. 
(2.20) can then be replaced by Hpff with eigenvalues 
ff = n/r ;ff, where the effective relaxation time may be de- 
fined by 

7 eff 
L= 

I 
- A(t)dt (4.7) 

0 

r Lff = rL for Debye solvents. In this way, the final solutions 
have the same form as Eqs. (2.18) except that the generalized 
a, (t), which include the vibrational contribution to activa- 
tion as well, are given by 

a, (t) = k,, ( 1 - A2A2) - 1’2 exp 
[ 
a$, * 

l+AA 1 , (4.8a) 

JG, C+,,tVJt = L, WG, (xIx,,t), (4.4) 
=2(x--x,1x, -+,A =L,WG,(x-x,,Ix, -xo,t), 

(4.5) 

a, (t) = k,, ( 1 - A2A2) - “2 exp 
[ 
fl(x,, A2A - x0 )* - 

l+AA 1 , 

(4.8b) 

with initial conditions G, (xlx,,O) = S(x -x,) and 
G2(x-xoIx, -x0,0) =S[(x-x0) -(xc -x0)]. The 
operator L, ( t), which has a time dependent diffusion coefh- 
cient D(t), is defined in Eq. (2.13 ) and the solutions of Eqs. 
(4.4) and (4.5) are the same as Eq. (3.25) except thatx(0) 
has to be replaced by x,., 

where A = A(t) and A = ,X,//Z. This should be compared 
with the corresponding relations given in Eq. (2.25) for De- 
bye solvents to which it is similar. 

G, (x,jx,,t) = [2rk,T( 1 - A2)] - “2 

Xexp - 
[ 

flxf( 1 - A)2 1 2(1-A’) ’ 
(4.6a) 

‘72(x, --olxc --xo,t) 

= [2?rk,T(l -A”)] -“2 

Rx, -xo)‘(l -A)’ 1 2(1-A’) ’ 
(4.6b) 

Note that A = A(t). These results together with Eqs. (2.29) 

In deriving Eq. (4.8)) we began from the effective opera- 
tors L Fff and used the approximation A ( t ) z exp ( - t /r ‘,“) , 
which is consistent with L g”. But we also expect Eq. (4.8) to 
be an excellent approximation for any A(t) not limited to 
exp( - t/r ‘,“). Indeed it gives the exact results in the limit- 
ing cases! For example, in the narrow reaction window limit 
k, (x) = k, (x) = k,&x -x,), A =il,/il= 1, Eq. 
(2.19b) leads to 

k,, =ko(2~k,T)3”2exp( -fix32), (4.9a) 
k,, = ko(2rrk,T) -‘I2 exp( - P(x, - x0 12/2), (4.9b) 
and a,, (t) and a,, (t) reduce to k,G, (xIx,,t) and 
k. G2 (X - x0 Ix, - x,,t), respectively, as seen from the 
Green functions given in Eqs. (4.6). This result is exact. In 
the wide reaction window limit, AzO, il, -2, aSi (s) Z k/s, 
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the inverse of Eq. (2.18) is identical to Rq. (4.1) . Also for 
Debye solvents, as shown in Eq. (3.18), 
A(t) =exp( - t/rL), and Eqs. (4.8) is again exact and 
consistent with Eqs. (2.25). 
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effective relaxation time r Lff defined in Rq. (4.7). For Debye 
solvents the method of solution presented here is, in princi- 
ple, exact since there is only one relaxation time rL. The 
kernal in Rq. (4.8b) for Debye and non-Debye solvents can 
then be expressed as The Laplace transforms of Eq. (4.8) are quite compli- 

cated functions even when A(t) for non-Debye solvents has 
the simple form of the sum of exponentials.’ This has lead us 
to try to solve Eq. (2.18) in real space. Multiplying Eq. 
(2.18b) by {s’ [ 1 + a,, (s) + a, (s) ] } and taking the in- 
verse Laplace transform, we see that the survival probabili- 
ties can also be written as 

a(t) = a, (0 + a, (t) = C c, exp( - ttinff) (i = 1,2), 
It=0 

(5.1) 
where tiaff = n/r iff and 

c, =c,,,,k,,l+c,,&,,‘. 
Substituting Eq. (5.1) in Eq. (4. lob) we find 

(5.2) 
Q, (t) = 1 - Q, (11, 

Q,(t) =Lf- ‘a(t-r)Q2(r)d7; 

(4.10a) 

(4.1Ob) 

where a(t) = a, (t) + a2 (t) in which a1 (t) and a,(t) are 
given in Eqs. (4.8). Equation (4. lob) is an integral equation 
for Q2 (t). Any solution, numerical or analytical, for a non- 
Debye solvent would necessarily require detailed informa- 
tion about A(t). This is discussed in Sec. III [see Eqs. 
(3.14), (3.20), and (3.21)] and the Appendix. 

Once an explicit analytic form of A(t). [or equivalently 
D(t) 1, is known, Eq. (4.10) can be solved analytically (see 
Sec. V) or numerically using Eq. (4.8). The accuracy of 
these solutions can be checked by comparison with direct 
numerical solutions of the reaction-diffusion equations giv- 
en in Eq. (2.12) from which Eq (4.10) is derived. Ref. 1 
discusses the numerical solution of Rq. (2.12) for Debye 
solvents and compares it with the limiting solutions and oth- 
er results (e.g. the interpolation formula and the double ex- 
ponential approximation) to Eq. (4.8). 

V. SOLUTION OF THE INTEGRAL EQUATION FOR THE 
SURVIVAL PROBABILITIES 

Here we present a method of solving the integral equa- 
tion (4.lOb) for non-Debye solvents in the context of an 

I 

i 

-(co +%I - Cl - c2 
. . . 

- co - (Cl + E, ) - c2 
. . . 

c= - co - Cl - (c, + E2 ) -*- 

1 

. . . 
- co 

. . . 

- Cl 

- cm 
- cln 
-cm . 

. . . . . . 

- c2 
. . . - cc, +e,) 1 (5.8) 

Q,(t) = bet - 2 c,F,, (0, 
II=0 

where 

(5.3) 

F,,(t) = 
s 

‘exp( - eff(t - r)}Q, (r)dr. (5.4) 
0 

Differentiating Eq. (5.4) and making use of Eq. (5.3), we 
have 

dF,(t)/dt+E,F,(t) =Qz(t), (5.5) 
which on combining with (5.3) leads to a set of linear ordi- 
nary differential equations for n = 0,1,2,..., 

dF, (t)/df = k,,t - E,,F,, (t) - c c,F, (t), 
n=O 

(5.6) 

with constant coefficients. The initial condition F,, (0) = 0. 
The general solution of Eq. (5.6) is” 

f 
F(t) =erc e -%t)dt + K,) , (5.7) 

where F(t) and G(t) are vectors whose components are 
F,, (t) and k,,t, respectively, and etc is the fundamental ma- 
trix” in which the matrix C, with m -+ 03, is given by 

I 

In Eq. (5.7), I& is a constant vector to be determined from 
the initial conditions F(0) = 0. It is apparent that the solu- 
tion of Eq. (4. lo), which up to this point is exact for a Debye 
solvent, can become quite complicated even though we 
know, in principle, how to solve it. 

An approximate solution could be obtained by an itera- 
tive procedure. Starting from a first order approximation by 
taking only the first term n = 0 in the sum of Eq. (5.6), we 
have 

dF,(t)/dt = k,,t - c,F,(t), 
which has the solution 

(5.9) 

I;b(t> =k,,cc2[ - 1 +c,t+exp( -cot)]. (5.10) 

Substitution in Eq. (5.3) yields 

Q2 (t)zkl,k -‘[ 1 - exp( - kt)], (5.11) 

where co = k = k,, + k,,. Equation (5.11) is just the slow 
reaction limit discussed in Sec. II.lPz Using this approximate 
result for Q2 (t) in Rq. (5.5) and solving the differential 
equation, we obtain 

F,,(t) = k,,k -‘{[ 1 - exp( - cfft)]/cff - [exp( - kt) 

- exp( - cfft)]/(cff - k)} (n = 0,1,2 ,... ). 
(5.12) 
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This is in accord with F, (t) given in Eq. (5.10). Substitution 
in Eq. (5.3) leads to 

Q,(t)zk,,k -‘I1 -exp( -kt)l - 1 c,,F,(t), (5.13) 
n=l 

where F,, (t) is given in Eq. (5.12). The terms beyond the 
first provide systematic corrections to the slow reaction limit 
outside this region. One can iterate again by substituting Eq. 
(5.13) into Eq. (5.5) to find an improvedsolution for F,, (t), 
and so on. 

VI. DISCUSSION 
Electron transfer reactions are usually characterized in 

the literature by their rate constants. This assumes that the 
reaction dynamics is sufficiently well known to identify a 
unique rate constant which is the case when the reactants 
show a simple exponential time decay. One can then distin- 
guish between adiabatic and nonadiabatic reactions as dis- 
cussed in the text and in Ref. 1. When this decay is multiex- 
ponential, however, the rate constant becomes ambiguous 
except when the dynamics can be described in terms of an 
effective relaxation time 7 iff or when attention is focused on 
the decay at very long times when a residual single exponen- 
tial time dependence remains. In this case the solvent dy- 
namics affects electron transfer in complicated ways which 
have been elucidated by us in several limiting cases for De- 
bye solvents.’ For instance in the narrow reaction window 
limit the rate constant k = 0.833r; ’ for barrierless reac- 
tions while if the barrier PAGF for the reverse reaction is 
large and the forward reaction is barrierless 
k = [ 0.6 + (rr/pAG :) 1’2] - ‘r L ‘. Many electron transfer 
experiments in Debye solvents confirm the proportionality 
between k and the inverse longitudinal relaxation time4 
which has also been discussed theoretically.‘*799 A distribu- 
tion of relaxation times for the solvent however would not 
generally produce such simple behavior or permit a full de- 
scription of the kinetics by a simple rate constant.4 It re- 
quires instead a more complete analysis of the survival prob- 
abilities of the reacting species which we have attempted. 

Equations (2.18) or (4.10), with a,(t) given by Eqs. 
(4.8), are our main results for ET reactions in non-Debye 
solvents when the free energy surfaces are described by the 
Sumi-Marcus model, see Eq. (2.1). The equations also ap- 
ply to Debye solvents in which case A(t) = exp ( - t /rL ) . 
The solutions are exact in the narrow and wide reaction win- 
dow limits for Debye and non-Debye solvents and also in the 
slow reaction and nondi#usion limits for Debye solvents. The 
behavior between these limits, is predicted by the general 
solutions. An iterative method of solving these equations is 
discussed, which requires the identification of an effective 
relaxation time 7 Lff. The interpolation formula and other 
approximations derived for barrierless reactions in Debye 
solvents can be carried over to non-Debye solvents with the 
use r Lff. 

This paper provides an explicit method of calculation of 
the survival probabilities in ET reactions when the solvent 
reorganization energy&%,, the ratio A = ;1,/;1 of this to the 
total reorganization energy, the constant k, which depends 
on the reaction adiabaticity, the reaction free energy PAGo 

and the time correlation function along the reaction coordi- 
nate A(t), are known. In certain limiting cases however one 
or more of these quantities is no longer an independent vari- 
able. For example, in the narrow and wide window limits 
A = 0 and 1, respectively. Linear response theory shows that 
A(t) is identical to the time correlation function S(t) of the 
solvation free energy of the reacting intermediates. While 
our derivation applies strictly for a continuum solvent we 
expect the result to hold accurately even in a discrete molec- 
ular solvent. This provides a useful link between time de- 
layed fluorescence measurements of S( t) for a solvent and 
the rates of electron transfer reactions in the same solvent.” 

ACKNOWLEDGMENTS 
We thank Professor Robert Dunlap for his interest in 

our work and for a critical review of the manuscript. Jianjun 
Zhu acknowledges a University Research Fellowship. 

APPENDIX: THE TIME CORRELATION FUNCTION OF 
THE BORN SOLVATION ENERGY 

In recent years solvation dynamics, which plays an im- 
portant role in the kinetics of ET reactions, has been studied 
extensively both experimentally’3-15 and theoretically.‘9-22 
The dynamics of solvation is measured by time dependent 
fluorescence Stokes shifts (TDFS) of chromophores form- 
ing suitable charge transfer complexes and is related to the 
time correlation function S(t) of the Born solvation ener- 
gY.‘8 In this appendix we will discuss the relationship be- 
tween S(t) and the time correlation function A(t) of the ET 
reaction along the reaction coordinate. 

The Born solvation energy is defined by22(a) 

E,(t) = - (l/2) 
s 

D(r)*P(r,t)dr, (Al) 

where D(r) is the bare field of the reacting ions and P( r,t) is 
the total polarization of the medium, which is related, by 
linear response theory, to the field D(r) by 

I 
P(r,t) = P”(r) + (477) -’ 

s 
c(r,r)D(r,t - r)dr. (A21 

0 

Here P” (r) is the electronic polarizability, which follows 
the field instantaneously and is given by 

P”(r) = (47~) -‘( 1 - l/e, )D(r) (A3) 
c(r,r) is a response function, which is determined by the 
microscopic structure of the medium surrounding the ions. 
Substituting Eqs. (A3) and (A2) into Eq. (Al), we have 

AE,(t) = ED(t) -E; 

s s 

f 
= - (87~)~’ dr D(r).c(r,r)D(r,t - r)dr, 

0 
(A4) 

where 

Et = - (8~) -‘(l - l/e, ) 
I 

D(r)*D(r)dr, (A5) 

The Laplace transform of Eq. (A4) is 

AE,(s) = - (8~) --I 
s 

dr D(r).c(r,s)D(r,s). (A6) 
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TO pursue this further we need information about the re- 
sponse function c(r,s) from a detailed molecular theory 
such as the dynamic mean spherical approximation 
(MSA).‘9-23 For a continuum solvent, however, the re- 
sponse function c(r,s) is 

c(s) = l/E, - l/E(S), (A7) 
which is independent of r and was given earlier in Eq. (3.6a). 
If the charges on the ions are suddenly switched on, 
D( r,t - r) = D(r) for t > 0 and is zero otherwise. Equation 
(A4) then reduces to 

s s 

f 
AE,(t) = - (8~)~’ dr D(r)*D(r) C(T)&- 

0 

= Eo,c- I 
I 

I 
C(T)d7, (A8) 

0 

where c is defined in Eq. (3.6b) and the Born solvation ener- 
gy at equilibriumz4 

Ei = AE,( CO) = - (8n) -‘c 
s 

dr D(r)*D(r). (A91 

The time correlation function of the Born solvation en- 
ergy EB (t) is defined as 

s(t) = [EB(t) -EB(co)]/[E,(O) -E,(m)] (AlOa) 

= [AWO -AE,bd]/[AE,(O) -AE,(oo)] 
(AlOb) 

= -AE,(t)/AE,(oo) + 1, (AlOc) 

where we have used AE, (0) = 0. Substituting (A9) and 
(A8) in (AlOc) we have 

I 

I 
&s(l) = -c-’ c(7)&-+ 1. (All) 

0 

On comparing with Eq. (3.12c), we see that 
A(t) = S(t). (A121 
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