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We extend earlier work of purs on the use of Padé approxirnants in the
theory of multipolar and ionic potentials. The new features are (i)} extension
of our work to mixed muiltipole terms and inclusion of polarizability, (ii)
formulation and implementation of a systematic means of getting analytic
approximations for all the two-body and three-body terms appeating in the
theory, (iii) assessment of the ionic Padé results in the low-concentration
region important in fonic-solution applications, {iv) vse of the Padé in a
mixed perturbation theory of improved accuracy in that low-concentration
regime. The resules of {iii) and {iv} are used to study the remarkable low-
density charped-sphere critical puint recently discovered by Stell, Wu, and
Larsen,

1. InTRODUCTION

This work is part of a continuing study concerned with thermodynamic
perturbation theories for polar systems (1-3]. Inaprevious paper [1] (hereafter
referred to as I) we considered a system of axially symmetric molecules with a
point-quadrupole located at each molecular centre. In the present paper we
extend that work to include polarizable molecules with both point-dipoles and
point-quadrupoles located at each molecular centre, and simple electrolytes with
varying charges. We largely restrict ourselves to molecules with spherical
cores but treat both ionic and neutrai systems together because the terms which
appear in the perturbation scries for each system have certain features in common
that allow their evaluation by very similar analytical and numerieal techniques.
By discussing them in the same paper we also ho pe to draw attention to the fact
that our work constitutes the basis for a novel and comprehensive treatment of an
ionie solution viewed as a mixture of ions and polarizable polar molecules,
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As in I, the perturbation theory consists, in the present ¢ase, of treating the
polar interactions (including the monapolar ones, i.c. the charges) as a perturba-
tion to the non-polar reference system, via an expansion of §, the Helmholtz
free energy per particle, in terms of the parameter A, which is the strength of
the perturbation.  In the case of dipalar and multipolar systems this expansion
reads

F=[4fU A4 f® a2 f pey (1.1)

The coelficients ) are characteristic of the reference system, and in particular
f° is its free energy per particle, Apart from f%) (which is identically zero for
the systems upon which we focus), f™ involves z-body correlation functions of
the reference system. As in previous work on molecules with dipoles [2, 3] ar
quadrupoles [1], we do not go beyond the term of O(A) in the theory, but
assuming that the series (1.1) is approximately represented by a geometric
series, we have followed our previous wark in forming a simple Pad¢ approximant
which extrapolates the free energies to higher ordersin A.  Computer simuiation
studies on dipolar or quadrupolar systems have shown that this is an accurate
method to adopt, even for high values of the perturbation parameter p (dipole
moment) or & (quadrupole moment) [4].
" The theory above applies most directly to molecules with point-dipales or
paint-multipoles embedded in spherically symmetrie cores. Although we have
cansidered [1] a hybrid of our own work with Sandler’s discussion of the effect
of nen-spherical cores [3], the accuracy of this last approach has yet ta be tested
against the * exact ’ values obtained from simulation studies, We note however
that one such study of N, by Weis and Levesque [6] lends strong general suppart
to the hope that important features of such systems can be treated in terms of a
Judiciously selected equivalent spherically symmetric pair potential. And
even without extension to include the effect of non-spherical cores, we believe
our own approach provides valuable insight into new features that appear when
dipoles and multipales are present. It has also led to a re-examination of
dipolar solids [7] and mixtures of polar fluids [8] by methods that are closely
allied to the way in which polar fluids have been treated [, 2],

Except for a discussion of the terms of O[A?), our earlier work [1, 31 has been
confined to molecules with only a single point-dipole or point-quadrupole.
The presence of more than one multipole on a molecule leads additionally ta
mixed terms in the free encrgy beginning at O(A*). We evaluate here the
complete set of free energy terms to O(A?) for hard spheres with point-dipoles
and point-quadrupoles.  When the molecules are optically isotropic the perturba-
tion theory and Padé technique can be extended to include polarizable molecules
as well [4, 9]. McDonald [4] has demonstrated that the contribution from
the polarizability is significant in comparison to the contributions arising from
. permanent dipoles in polarizable Stockmayer molecules corresponding to real
HCl molecules with respect to-the values of the permanent dipole and the
polarizability. Accordingly our own calculations of the phase diagram for
HCl-type molecules with point-dipoles and point-quadrupoles include polariza-
bility effects also, but anly as far as the dipole-induced dipole terms discussed
in McDonald's paper.

In T we proved a theorem which demonstrates that two-body rerms of
O(a**1) in the free energy are zero for certain combinations of twe multipoles,
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In the present work we extend this theorem to include mixed many-body
terms to any order of A. Special examples are given by the application of the
theorem to the cases of interest here ; two and three-body terms of O(A®) arising
from dipoles and quadrupoles on each molecule. The application of the theorem
" is, however, not limited to thermodynamic perturbation theory, because the
theorem iz based on a rather fundamental property of spherical harmonics.
This is discussed in § 2 where we are led to a simple but powerful criterion for
determining, by inspection, whether a cluster integral of angle-dependent
potential energy bonds on N vertices is identically zero. When they are non-
zero, angular averaging is followed by spatial integration (which we discuss in
£ 3) of the two and three-body terms of O(A%) and O(M). The integration of
the three-body contribution to OfA%), the result of which is essentially given as
the triple integral I, "5, proceeds along the lines introduced by us for triple-
quadrupeoles [1]. We extrapolate our results for § beyond O{A*) by using the
Padé approximant

pepen[1-B]" (1.2

where f* is the Free energy of the reference system and f, and f, are the contribu-
tions to f of O(A%) and of O(A%), respectively. Polarizable molecules are next
considered in the same section by simply adding te ¥ the free energy contribu-
tions due to the polarizabilities, On this basis the liquid-gas co-existence
curve for the model system is constructed.

We conclude that the dipole-induced dipole contribution is significant in
our model corresponding to real HCI, although we find that it is much less
important than in the polarizable Stockmayer model 4], because the permanent
guadrupole in HCI also gives a dominant contribution which tends to reduce
the relative importance of the polarizability.

Three-hody terms similar to thosze appearing in the perturbation theory of
polar fluids also appear in the Stell-Lebowitz [10] (SL) theoty of charged
particles and in the mode expansion due to Andersen and Chandler [11].  Stell
and Wu [12] have in fact used a Padé approximant for symmetrically charged
spheres to extend the application of the theory into the moiten salt range.  Our
‘method of caleulating f,.,.,. % is, with minor modifications, applicable to the
evaluation of the three-body integrals occurring in the SL theory, We find it
convenient to discuss this separately in § 4, where we also consider the union
of a Padé approximant derived from a truncated Stell-Lebowitz theory with the
second ionic virial coefficient B, [13]). We refer to this as the SL6(P)uB,
theory., It gives the Debye—Hiickel limiting law plus H, at low values of the
perturbation parameter and the Padé approximant, which we call SL&(P), at
high values. It is the first theory which has combined these features in 2
simple way, and it represents a considerable improvement of the SLA&(P) in the
density and temperature region corresponding to a dilute electrolyte model.
We use it here to study the vicinity of the low-density charged-sphere critical
point recently discovered by Stell et al, [14].

Our suceess in formulating simple analytic expressions for ionic and multi-
polar systems in the liquid-density regime has been facilitated by the remarkable
smoothness as functions of p of the coefficients in our A expansions and Padé

Is52
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approximants in A. These caefficients are integrals over pair and triple distribu-
tion functions g and gz [e.g. the J,®3 and ] ,,."® of equations (3.9) and
(3.12)] which for fixed molecular positions change markedly and rapidly as p
increases. Yet the integrals are sufficiently slowly and smoothly varying with
p that they can be well approximated throughout the whole liquid-density range
by simple polynomials and Padé approximants in p based on the first few terms
of their density expansions. :

As noted in previous work [3], these integrals, and variants of them, arc
ubiquitous in liquid-theory perturbation approaches for simple atomic as well
as polar and ionic fluids. In Appendix A we give an accurate and extensive
set of approximants for the 7,73 that extends our earlier resuits far this funetion
while in Appendix B we consider the systematic evaluation of the cocfficients J;
in the density cxpansion of the triple integral [, ¥% (x), where x=pa® iz a
reduced density and a is the molecular diameter '

Liripre™® ()= Sy k- Syx+ S + TP + (1.3)

This integral appears in the three-body term of O(A%), and also in the"dipole-
induced dipole terms of O(xp?') and O(x*u?) where « is the polarizability {4]
and p the dipole-moment strength. In the case of a hard-sphere reference
systern the individual J, cocfficients due to three-body interactions between
permanent dipoles andfor multipoles are also related to the high-temperature
non-additive contributions to the third virial coefficient arising from dispersion
forces. These are in fact given by BZ(ijk)J{i7k}/3 where §=1/ksT and the
‘set {i7k} characterizes the type of three-body dispersion force (triple-dipole, etc.).
"The interaction coefficients Z(ij&) are those discussed by Bell [15] and others
[16]. Another application of the technique occurs in the calculation of effective
pair potentials from non-additive dispersion and induction forces [17, 18]
Finally, all of our work here can be directly extended to mixtures of dipelar and
quadrupelar fluids.

. Two important papers that extend the Padé technique of 1 and complement
this work have recently appeared.[19], one by Flytzani-Stephancopoulos ¢f /. and
one by Patey and Valleau. The first reveals the sensitivity of the phase
boundaries in mixtures to the strengths and relative magnitudes of the dipole
and quadrupole moments of the component molecules (this was already apparent
in the single-component case from the results of reference [3]). Both further
suggest that the presence of dipolar and quadrupolar forces are sufficient to
account for a good deal of the variety in the qualitatively different sorts of phase
surfaces experimentally found far meleculzr fluids but not found either experi-
mentally or theoretically for fluids of monatomie molecules. We anticipate
that our methods of analytically approximating and evaluating the doublet and
triplet integrals treated herein will prove to be of special value in facilitating
future mixture studies that would be prohibitively difficult to do accurately
without such computational methods at hand.

Because of their wide applicability, we regard the mathematical develop-
ments of our Appendices as constituting a central accomplishment of this paper.
We refrain from further discussien of most of the applications and extensions
that we have noted in order to keep the paper a manageable length. Some of
them are so immediate as to require no further elaboration ; the rest we hope o
take up in due course.
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2. MANY-BODY INTERACTIONS FOR SPHERICALLY SYMMETRIC MOLECULES
WITH POINT-DIPOLES AND FOINT-MULTIPOLES

The angularly averaged two-body potential of O{A") may be obtained from
the expression

1
= "E In {exp [—ﬂZ* Ak‘fﬁ'm,{“ir X 2.1)

where the index k represents the pair of multipoles {#s 4;) on molecules f a-d ;
which are assumed to be spherically symmetric. Their energy of interac un is
Ay g (%, x;) where x, ={r, w,) defines the position (r;} and orientation (e,)
of the gth molecule.

In (2.1), <{ )}, denotes 1/(4=)* {{ }dw, dw, and g={k; TV, where kg
is Boltzmann’s constant and T is the absolute temperature.  Sinve (W pee =1
for point-dipoles and point-multipales, the term of O(A?) in (2.1} comes from
= (B3 DY Auwor (%, %2)]%>,. Our notation here is the same as that used

in 1. In particular we wish to recall that /; (or L) is 1, 2 or 3 according to
whether a point-dipole, point-quadrupole or point-octupole resides at # {or ;).

In what follows it is convenient to characterize in greater detail the inter
actions between two vertices 7 and j in a cluster integral of potential energy
bonds. * Such integrals (or graphs representing them) appear in the perturbation
theory of polar fluids [1]. We will use three indices {if, p) to characterize a
particular bond between 7 and j. The index p ranges over the number n;; of
bonds between £ and §f, and instead of {, we will write it p to denote the multipole
on vertex # interacting along the pth bond with veitax j. The potential energy
of interaction between two molecules at ¢ and 7, dw(x,, x,;), can be expressed as
an expansion in spherical harmonies through the vquations

Aw(x;, x;)= );, At 1% X5, (2.2)

where % represents the pair of multipele, (Lizps Lipl X 15 equivalent to
Y Y and 3

I'H-p fitem

':Lk'!":"!u.; ‘”Ir{xz., ) =4 E X lrp M M {ri)

X ‘E‘ﬁ;,p rﬂ.r;,p Eﬁiij' #’iif}‘s:”,p iy, (E,fﬁ! 'r&jﬁ}‘ (2*3]

In (2.3} X'luws bs mus (r) {dencted in our earlier work as .Cldm (#)) is the
interaction coefficient between the pair of multipoles ({5, 3 &5, ) on the malecules
at 7 and j, respectively, at separation ri- Lhe integer m,; ., cxtends from
—min (L ., L p) to +min (], ., iz )y and the pairs of angles (8,7, %) and
(877, ¢} determine the orientations of the multipoles at i and R

A general contribution to the two-body term of Q%) in the free energy

{see (2.1)) may be represented by

3 k]
<ﬂ ':Ltﬂ"h:,p laie [xI! IEJ u=4'?r E Z_ E [T A binp map ;'ru]
»

=1 Hyg Mg Rlygg pe=l

1 124y 0l 2
bt C[mu,,l[ el Cﬂmu,pi ety [,_,,-1-}

where {/;, .} represents the set {{,, }, fia 4, L0 1), and a similar explanation holds
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for {fy; p} and {m;z,}. Then in (2.4),
3 .
C[mu.p}““m}=2wa ( E ml:.’.p) K [1 +|:... 1:| ;E: J'Liqp-i-lml.l.:pl]
p=1

ﬁ Pmr"“‘wm' fx) dx {2.5)

=

=1

with an analogous expression for Cimuaesel. In (2.5), X is a normalization

constant, P, Imuel(x) the associated Legendre function and & ) is the

Kronecker delta. In arriving at (2.5), the parity of the associated Lependre
3 1

functions [1] has been used. Since Elmm p =0 implies that ¥, [m,, | is even,
pm pml
3
it follows that C,,,, ,Mual is zero if T 1, is odd. An obvious extension of
=1,
this result is that if there are n,, bonds between two vertices, the corresponding

Py

Clm g, 00! is zero if Y 4, is odd.
p=1

The above result can also be generalized to apply to many-body interactions.
The sum of all irreducible graphs of potential energy bonds between N vertices
which contribute a term of O(A") to the free energy is

lI:II_J'l

iq‘i" “ﬂ{rl: rzl ".":l r."p":l _“_J E <w(x1r IE}N“ ﬂ-'{.x]_,, xn}n“'“
Mgt o B
oy, Xy )N, 2o(Xy, Xy )5 Xy, T LL LTS T (2.6}

In (2.6) ™ (ry, ry, ..., ry) is an angularly averaged N-body potential and
1
| :':’m::-mf w0 ) duy do, .. dey,. {2.7)

Since Am(x, x;) can be written as an expansion in spherical harmonics (see (2.2}
and (2.3}), the integral in {2.6) is factorizable. It follows that if the angular
integral over any one of the vertices is zero, the contribution of that term {or
graph) to 7™ (r;, r,, ..., Fy) is also zero.

The angular integral over the ith vertex of a term in the sum {2.6) has the
form

Ry

hi
I ﬂ H Slfu'.'- LT {E‘I:!:i'! ¢f1j1 dwf‘ {2.8}

f=1p=t

F
To do this integral, all angles (6%, $#) at i are referred to the same axis, which
is taken arbitrarily to be the (1) axis {assuming withaout prejudice thar £s 1)
The spherical harmonies referring to the (ij) axis can be written as linear
combinations of the spherical harmeonics with respect to the (r1) axis, so that

Law
S!u_, My, (eir.{ '#'.I'”:I i E Dm"u_.,.- r.ln_.-,,,-!‘!'r'Il S!u., mep {Er'“l (ﬁ'frljl {2'9}
Mgy = =l

where the coefficients D,,. . e are constants for a fixed set of vertices i,
jand 1. By introducing (29} in (2.8}, the integral may be expanded as the sum
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of products of spherical harmaonics referring to the same (11} axis. Since each
term in this sum is characterized by the same set of I; ,'s, all terms will be zero
after integration if one term can be shown to be zero due to some condition on
the set {f;; .1 associated with the vertex . An arbitrary term, when (2.9} and
(2.8) are combined, has the form

J.\r mij

j 1_.[ I—[ Srl;’.p T’ (Eiilr ‘:'!I’iﬂ} d‘“f- {2 lﬂ}

F=lg=1
Al
Using the same argument as for the two-body term of O(A%), one finds that the
above integral is zego if
L T
Y ¥, is odd. {2.11)
im1pm
i¥
This implies that an jrredurible cluster diagram contributing to By {ry, rg, .. Ty}
i zero if {2.11) is true for any vertex i (1 ={< N) in that dingram. A corollary
to this is that, since exp (x) = 1+x, the corresponding irreducible diagram of
Maver f-bonds is always greater than or equal to zero if the diagram containing
only potential bonds is zero.

We will illustrate the general result for potential bonds with two examples that
are relevant to the calculations which follow in §§3 and 4. Consider the
contributions of O(A%) for o system in which each molecule has a dipole moment
and a quadrupole moment. Then representing a dipole-dipole bond by
O O, a dipole-quadrupole bond hy O — -2, a2 quadrupole—dipole
bond by O-- O, and a quadrupole-quadrupole bond by O- - - - - O, the
two-body term of OfA%) is

1 2 48
7y (g, fa]=3_r I:en-t- 2 6.:-:’b + {::_—_:}-
+6 > +3 ) 6 0 43 5

46 e + 6 file +6 &

6 KD 42 £ 46 4 ) (2.12)

According 1o the theorem, all diagrams in {2.12) with < or £~  vertices
are zero, which leaves us with

1 z = 5
B (ryr) =g (€55 €D +6 S s L) 213)

Similarly for the three-body term of O{A2), we find that

1
3" (ry, 1y, "a:|='i"! (o Atat e A ) (2.14)

after excluding all diagrams containing at least one  =_  wvertex. It is im-
mediately obvious fram (2.14) that a vertex in the three-body terms may be
associated with either a dipole or a quadrupole ; hence the terms as they appear
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from left to right in (2.14) are characterized as triple-dipale (TD), dipole-
dipole-quadrupole (DDQ), dipole—quadrupole—quadrupole (DQQ) and triple-
quadrupole (TQ). Itis clear from the analysis above that such an association
between vertex and multipole (or dipole) is not always possible, as one can see
for the two-body interactions of O(}) in (2.13). The special features of the
three-body terms in (2.14) would be lost if an octupole (f; =3) wers also
present at each molecule ; according to our theerem, non-zero diagrams of the

z o
type .r_" ‘: » Where o—ww—s represent a dipole~octupole bond, wouid then
1 ki | - 3

appear.  One sees now that vertex 3 can no longer be associated with a unigue
dipole or multipole.

3. CALCULATIONS FOR POLARIZABLE HARD SPHERES WITH POINT-DIPOLES
AND POINT-QUADRUPOLES

If we recall that ; , equals 1 for a dipole and 2 for a quadrupole, the two-
body term of O(A%) given in (2.13) can be written as

1
S By, ry) —_'E‘r ;reﬂ'{wzan}.:.. + 3pt OF (o, ® o 3, + But Ea'"('f-"'ui Wag tu,
+6pd @afﬂ'u“mwn}u]- (3.1)

Of these we have evaluated only the first in [ :

432
gy = 545 Tt {31.2)
By using the same method to calculate the other aagular averages we find that
- 24 ,,
(aoyy® WapPu =z 17, (3.3)
24 :
{15° Wag P, = 33 T (3.4)
and
8
(T g T0gattta > =55 il (3.5}

The two-body term of O(A%) in the free energy is hence

i pt@* 24,704 72 @
fu,zziﬁzj‘glzﬂ{r] [g 11 +3_5'H;|‘.'I_+EE:E '

(3.6)

where g,,° (¥} is the radial distribution function for the reference system.
Assuming that these are hard spheres, of diameter a, it is convenient to introduce
the reduced variables ;

x=pa’, y=rja, p**=p¥k Ta® and O*2 =2k, Tas, {3.7)

and rewrite (3.6) as

2uri e 12% Ea*4 16(=) #E
.sz.: =X [_‘5_ ‘ritHS I:J:] ""LH_ IH:II:EI {I} + 733 ‘rnHa fﬂ'] {33]
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Here we have used
[ =)
LRS (x) 24w [ gH8 (z, y)y2—ndy, (3.9)
nl

and 2R9(x ) is the hard-sphere radial distribution function. We have
arrived at an approximation for (3.9) by expanding gHS (x, ¥)in a power series
in the reduced density (x} and integrating term by term up to O{x*). This was
improved by fitting the coefficients of two additional powers of x to obtain
agreement with a numerical computation of £,7% (x) using unpublished Monte-
Carlo gH% (x, y) from Verlet and Schiff. In this way an accurate and extensive
set of approximations in the form of extended virial series for n ranging from 4
to 24 was obtained. The details are given in Appendix A of this paper. These
approximants are equally accurate and more convenient to use in subsequent
work than the Padé approximants given earlier for some of thesc integrals [3].
We have also calculated the corresponding integrals obtained when £H%(x, ¥)
Is replaced by g%5 (x, y)—1 for a ranging from —1 to 2, These arc required
in the next section where the Stell-Lebowitz theory [10] for charged particles
is considered. OQur extended viria) series approximations for I H3 () were
also used in calculating the term of OfA%) in the free energy of the dipolar—
quadrupolar system [3]:

#4 ; EEEAL T T4
Bfa= ~= [*“? L2 () + 5 8 () 2 fmﬂﬂij]. (3.10)

‘The angular averaging of the three-body terms of Of AY) represented by
graphs in (2.14), has already been discussed by Rasaiah and Stell [20). From
this it follows that the corresponding contribution to the free encrgy is

TS L T ] ,H-- 2 -E] *d4

e H
.3f3.3=x2[.5_4 ITDHSI:""}"'_ 750 ‘ppe™® (¥)+ 5an {oaa”® (x)

E}IE
+E-ﬁﬁ F {x}] {3.11}
where the triple integral is defined ag

Beip1a®3 (%) = | g, 8 (R, 5, r)Wiipiel R, 5, 7) ds dr, (3.12)

in which R=r/a, s=r. /2 and r=ryfa. The individual angularly averaged
- three-body potentials, represented collectively as I¥,,;,,, in (3.12), are precisely
the same as the corresponding angular terms (Wry, Hoppe, Whag and 1)
which occur in the theory of dispersion forces [15].

The triple integral (3.12) has been calculated here by employing the super-
position approximation for g,,,H8 (R ;, r) and the procedure described in I for
triple quadrupeles. Since the calculation js rather involved, the details are
discussed in Appendices B and D, [p this section we present only the results
for the density expansion of firip1c™® (x) to O(x?) and an extension of this, which
includes two additional powers of . ‘This extended virial approximation is
sufficient 1o obtain agreement to within (-5 per cent with 2 numerical ealeulation
of the integral using the full £1%(r} in the superposition approximation. The
SETiES are convenient to use in subsequent calculations of the free energy at an
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arbitrary fluid density. The coefficients of the extended virial series
approximation
Ir_rjn[eﬂs {-"f-') ™ jﬂ + .-rl.'l' + J’sxz =+ _Iill:!.:'.'3 += ..F*:c" = Jﬁ:c's', {3 13 }

for the various three-body interactions are summarized in table 1. All of the
Jy coefficients in this table were obtained analyvtically, and so were the J, for
triple—dipoles and triple—quadrupoles, and the J, and 7, for the same systems
when the Percus—Yevick (PY) radial distribution function was used for the
reference system. The analytic results and numerical calculations of the
coefficients in table 1 are discussed in Appendix B, and thé numerical caleulation
of 1 ip1.H% {x} is discussed in Appendix D.

The use of the PY approximation for the two-body radial distribution
functions in the superposition approximation for g .08 (R, s, ) generally
tends to compensate for errors intraduced by the latter approximation {21], and
we have accordingly used the appropriate extended virial series based on the
Jo J, So7Y and J,PY coefficients in 2ll our calculations of the three-body terms
of O(A%). The difference between using this and the alternative set given in
table 1 is very small—about 06 per cent in J;,"% (x) at a reduced density x=0-8.
This corresponds to a 0-2 per cent difference in AAf™ at the same density, for
p*=1-0 and O*=0. With these approximations for £,"'S (x) and ., (x),

the quantities
B =.3”3,2+f:1,a]' (3.14)

and f, can be easily calculated at any.fluid density. Our results for a range of
* fluid densities are shown in figure 1 with the details supplied in table 2. Three
systems are compared; (i) p*=+/2, ©*=0, (i) u*=0, @%=,2 and (iii)
p*=0%=1. The Padé approximant for the excess free energy (referring to
hard spheres as the reference system),
-l

page=p-=p [ 1-2 (3.15)
which is our best estimate for the excess free energy of hard spheres with point-
dipole and point-quadrapeles, is also shown in the same figure,

It is also of interest to calculate the excess energy per particle, which is
Ade (in reduced units), and the excess compressibility factor A=, since they are
often more readily accessible experimentally than the excess free energy (AAf),
We have made use of the excess compressibility factor to locate the densities
and pressure of co-cxisting fluid phases from a plot of the chemical potential
against the pressure. These properties can be calculated from ZAf, Az and the
equation of state for hard spheres, for which we have used the Carnahan—
Starling equation [22]. By applying the standard thermodynamic relations,

. E(BAf)
_\g --Er_ﬁ {3.16}
and
e A (3.17)
ox

to the free energy serics, we have

Ae=eateq+ ... f3.13}
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and
Az=za+ 294 ..., {3.19)

where the subseripts 2 and 3 denote the terms of O{A%) and O{A%), respectively,
From these one can form the Padé approximants

Kﬁﬂf]ﬁ:(ﬁiﬂ (3.20)
and .
(A)py = 2, _ (3.21)

The terms of O(A*} and O(A%) in the series for fAe arc particularly simple
since we are dealing with a hard sphere reference system whose properties are
independent of the temperature. ‘Taking account of the fact that 8 enters the
expression for SAf only through p*? and ®*2, it follows immediately from (3.16)
and the definitions of u** and ©* that

Le C(BA F(EA
BAe=p*2 %+@*3 ;EE*B{; {3.22

From this we find a simple preseription for the calculation of Se_
tn=nf, (n=3). (3.23)

The factor # in (3.23) shows that the rate of convergence of the series for SAe
is siower than for the series representing SAf.  When using Padé approximants
for the series summation, however, the rate of convergence may be of little
importance (provided the series converges at all). 4 priori there is no reason
to prefer one series over the other in this respect, but it is known from computer
simulation results [4], that the thermodynamic properties are most accurately
obtained via the free energy Padé. "Tt seems advisable therefore, to calculate
BAe by differentiating the free energy Padé. A second approximation for fie
given by
2

Baeree=pC2ti=ti( 1- 1) (3.24)
is then obrained.  Similar considerations also apply to the excess compressibility
factor, for which a second, hopefully better, approximation is

{M}r,g___(i :z%) J_,(I _]i:)s [;3_23,]. (3.25)

The prescriptions for 2, and z, are also sim ple ; they are given by the corres-
ponding equations for Bf, and §f, with 7 M9 () replaced by

{;,,Hs (x) +x E_a; rus {x}]
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and [y, (%) replaced by
i
[Ejt.riplu"ﬂ (x)+=x e firipre® 1:-‘-"1:,-

Our extended virial scries approximations for these integrals allow us to calculate
gy and z; with very little effort. A comparison between the rwo approximations
for BAe and Az at p*=0%=]-0 s given in table 3.

Table 3. Comparison berween pwo approximarions for excess enerpy, e, and cxcess
compressibility factor, Az, for hard spheres with pont-dipeles and print-quacou-
poles with u*=@%=1-0. The Fl approximation is based on the series gxpansion
of the actual property listed, the P2 approximation is based on differenciation of the
free encrgy Padé, '

x (fde)m  (BAelps (Az)m (Ax)ps
01 =0-431% 04226 —0-20625 —D-2623
o3 — 14255  —1-3830 =0-97631 —0.0857
-5 — 23872 24915 —-1-0718 19344
a-7 —39145 37198 —3-29290 31768
0-8 — 44418 —439F1 —40928 —3-9131
08 —54138  ~-30973  —4996] —4T333
10 —62334  =5-8328 40127 —356520

We will now turn to the effects of polarization.  Using Barker's formalism
[9], McDonald [4] found that the additional free energy brought about by
dipele-induced dipole interactions is

f't'“ﬁfa.n+fn,1=+f:,g;+---- : (3.26)

In (3.26), the first subscript chasacterizes each term as a two-body or three-body
contribution, while the next two subscripts give the orders of « (the polarizability)
and u? respectively,  After doing the necessary angular integrals, McBDonald
showed that f,,, is related to the two-body dipole—dipole term of OfA?) and
faae and f; ., are related to the three-body triple—dipole term of O{A%). Ex-
plicitly, for a hard sphere reference syster,

Bon = =a* u*t vI1S (x), (3.27)
* o wd L2
Bfsn=" L3 () (3.28)
anél
L L.E_ L
.an.n:a_j_-,‘i fpp''® (x), (3.29)

where 2*=aja®. The last term is quite small for typical palar fluids (e.c.
HCI; a*=~0403) and can be ignored.  tHence g@f** may be considered to be a
power series in a* u**", and McDonald surmns this in the same spirit as our Padé
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approximant for permanent dipoles and multipoles to got

fr=fon | 1-22]" (3:30)

o,11

The corresponding contribution to the excess compressibility factor, z°#, is
Etven by an expression exactly analogous to (3.25) with =, ,, and Iy.1s Teplacing
Zy and =y, where 2, ,, and T3,12 are related to f, 1, and fj 4. in the same way as -
and zy are related 1o f, and fa  Our best approximation for the dipole-induced

dipole contribution 1o the reduced ENEergy is

(Be™) = 2 [ J—] (3.31)

=1L
This 15 the analogue of (3.24), but has 2 different functional form since, instead
of (3.23), we have :
€2 =fs1 and e, =232 (3.32)

We have calculated the free-encrgy contribution according to (3.30) when
p*=0*=10 and «*=0-05. The results are piven in figure 1 and table 4.
It is found that the polarization effect accounts for less than I} per cent of the
total excess free energy in this case.

Table 4. Conrributions w the excess froe enerey due ta polarizability for haed spheres with
permanent dipole mament u* =10 and polarizability <% =(-03,

T B sz Bfa,a A Fs0) gf=
01 —=0-0224 a-CO1E J-0002 —0-002609 — 0021
03 — 00767 0-0172 Q0026 —0-0555 — 00627
05 — 1455 00580 D087 —0-0873 — (= 1040
7 —0-2308 1345 O-0202 — 00962 —{-1458
0-5 —0-2803, 0-189% D-0284 —{1-0907 — 01672
o9 —{-3348 (-2570 0-03846 =0-0778  °  —(-1894
1-t} ={:3942 03374 0-0504 ~ 00568 =0-2124

The liquid-vapour co-cxistence curves in the critical region are shown in
figure 2 for four special cases of the present model ; (i) @*=a"=0<pu*, (ii)
pr=at=0<0* (i) p*=0*>0=a* and (iv) u*=0*=0, x* =005 A large
difference between the purely dipolar and the purely quadrupolar system is
observed. The critical point of the quadrupolar system is located at values of
T and x that are 100 per cent higher than those for the dipolar system.  Dipole
moments added to the quadrupeles so that x* = 9* increase the critical tempera-
ture and decrease the critical density by 20 per cent.  ‘The polarization has
little cifect on the position of the critical point.  The rectilinear diameters are
considerably more temperature dependent for the dipolar system than the
others.  For the purely quadrupolar system, the rectilinear dizmeter shows a
slight curvature, whereas it s practically lincar in the other cases. Our
esttmates of the critical constamts are given in table 3. We should also point
out that in the cases where quadrupoles are involved, the value of z, differs
considerably from the * normal ' valye 03,



1002 B. Larzen ;'_'I al,

Figure 2. Liguid-vapour co-existence curves far polarizable hard spheres with poing=
dipoles and point-quadrupales, The reduced temperature T* is defined as ] /p**
when 8% =0 or 8% =.* and as 1/0%F when u*=0.

Table 5. Estimates of the critical constants for polarizable hard spheres with permanens
dipoles andfor quadrupoles,

Cage .I"‘- e a* T fa) - B (&:'
I =0 0 0 0-23 0165 0-300
(i) 0 >0 0 062 0-420) 0-473
[iei]) =0 »r 0 076 0-344 421
(iv]) =0 n 05 0-78 0-335 0-200

I::I:J G"——a‘zn-ﬁ:.p.'; (I:i]l p‘kx'zﬂ{'ﬁl"; I:Jij:l _u'=@.'.'-'h|:|=\z': [j-.'.a'} lu":'@':?u.
a* ={-05,

(2} T*=1/u®n cases (i), (i) and (iv), and =1/6%2 iy rase {ij).

':é,] EEEFEVr;ﬁr-&ﬂTIc-

4. Mixep FPERTURBATIONY THEGKY FOR CHARGED SYSi’EMS

In this section the thermodynamic properties of charged systems are discussed
by emploving a mixed perturbation theory with the Stell-Lebowitz {SL) [10]
and Mayer [13] expansions as the ingredients in the mixture. Both these
theorics are, of course, exact if evaluated to all orders in their respective ordering
parameters, which are the ionic number density p in the Mayer expansion and
the charge parameter Se%/e in the SL theory.  Here we shall consider the union
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of the Mayer expansion truncated after its second term and a Padé approximant
based upon the SL expansion of the Helmholtz free energy through Of«f),

Qur discussion is limited ta the simplest possible case, namely an clectrically
neutral system of ions which are identical in all respects except for the charges,
The numerical results presented are for the restricted primitive model {RPM),
i.e. charged hard spheres of diameter @, immersed in 2 continuum of dielectric
constant €. For this system, the leading terms in a free-energy expansion
derived by Stell and Lebowitz (1G] are

[5]‘}31.5:8;-0—-—2’3__—-{:_ _F hlnn dr.‘._x_& j.f ;;!zur drr_h:_ﬂ 7 ‘ﬁjzn ri d'r
¥ ; 127p  16wp 7 s Brp Bepl @

Faa+ Fuy

= 2
~ ¥ _ﬂ[ dryz .F dryy : j I fiyag” d"ﬂ::’- (4.1}
u Frg =z
The subseript § is associated with SL to emphasize our interest only tn.a finite
number of terms (to O(x®)) in the 5L uxpansion, so that SL& constitutes an
approximatien to the exact result, In (4.1), 8f is the reduced Helmholtz free
energy per particle, §f*is the corresponding frec energy of the reference system,
—«3{12mp is the Debye-Hiickel iimiting law (DHLL) term with x equal to the
reciprocal Debye length, defined by
: ke = (4'”'3! .B."f} E s Bia

all wonic
=pecLes

where p; is the density of species 7, and p= L 7 The remaining terms contain
Ayp® and Ayyy" which are two and three-particle correlation funcrions for the
reference system, and p is the total number density of the ions. Details dealing
with the calculations of the integrals in (4.1} when applied to the RPM are given
in Appendices A, C and D.  Like our treatment of polar molecules in §3, the
density expansions of A,," and h,.,° are used together with the superposition
appreximation for the latter to arrive at the following extended virial approxima-
tions for these integrals
=1

[ RS dr=n(— | +0-4581x — N:2686x2 + 0- 154343
a
—00733x* +-0-0168+%), (+.2)
[ 28 r dr =a®(— 05+ 0-5760x — 0-5911x2 + 0-5428.59
]
= 041633+ 0:1630x%), (4.3)

a5
!' At e = 03333 £ 0- 74182 — 120472+ 161392
it
— 154875+ 0-6626x5) (4.4
and

Tin+Faa

kol E x
[ dria [ dryy [ a8 dr,=a¥(15-2-3431x + 2-81072
i [F] = Fagl
— 3129253+ 2:6899x — 1-0081x%).  (4.5)

The first four coefficients in (4.5} have been cvaluated analytically using the
Percus—Yevick theory for 4,M9: in the exclusively two-body integrals the

M_P, it
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density expansion for the exact 4,5 has been used. The last two terms in
each series have been determined from a2 least squares fit to the direetiy caleulated
values of the integrals.

Qur calculations of the triple integral o beveond the wark of Stell and Wua
[12] who computed the coefficients up to O(x%) only, but unlike them, we do
not take corrections te the superposition approximation into consideration.
According to Stell and Wu, the best Padé approximant based on (#.1) is of the
form

: wl I+
(Faf)sLater= S Trdarie . (+8)
where the coefficients n,, d; and d, are independent of the temperature, and
determined so as to reproduce (4.1) correctly on expansien. Foer the value of
fetle corresponding to a 2-2 agueous tlectrolyte model st room temperature,
the convergence of the SL expansion is extremely slow at concentrations above
0-25 molar. This is illustrated in figure 3 where different approximations to
PAf are shown as functions of the ionic strength
I=} E ez

3l e
SPddien

The reason why the SL&(P} approximation works at all seems to be that it is
heavily biased by its asymptotic form of lincar 2e*/e dependence oz Be?fe —rc,

1o

paf o

Vi imoe) 2

Figure 3. Dilfcrene appraximations for the exeess froe energy for the restricted primitive
model (charged hard spheres) versus the square roor of the dumie strength for 2-2
slectrolvees with u=42 A, =25 4ynd e=7R-338, DHLL refers to the Delive-
Huckel imiting law, eurves * SL4 ' and "SL5 " are the free cnermies to ©(x') and
M x*) tn the Stell-Lebowirz expanzion, and ' SLA " is the free energy to (0% given by
equaton (+.1%.  The Padé approximant (4.6) hased an (+.11, ancl the mean spherical
ipproximation give the indistinewshable resules an this seale, ' SLAP) and 518 .
The two bounds shown are Rasaiah and Stells upper bound, FAf =0, and Onsager's
lower bound, §Afz — Se3fea,
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which is known to be correct, The close agreement beeween the SLO(PY} and
the mean spherical (23] (MS) approximations is owing to additional similarities
between the two theories. [n figure 3 two existing bounds on BAf are shown :
Rasaiah and Steli's upper bound [24], BAf <0, and Onsager's lower hound {25]
B3z —fe*fea.  In the limit of Betfe —o0, the MS result approaches Onsager’s
lower bound asymptotically ar all p=10, whereas the SLG(P) result tends to a
value somewhere between the two bounds, the exact limit being determined by
the density,

By differentiating (+.6) with respect to the density and temperature, we et
the additional results for the compressibiliry factor = (which is identical to the
esmotic coefficient for this model electrolyte) and excess energy FAe of 1-]
and 2-2 model clectrolvtes that are presented in tables 6 and 7. The comparisan
with Monte Carlo [26] and other results [23, 27] shows that the SL6(P) s
already quite pood for 1-1 electrolvtes at all concentrations up to 2 molar
{corresponding to a reduced density x=(-2). Fogr 2-2 electrolvtes the theory is
less satisfactory at these concentrations.

A more serious flaw is that none of the anomalous effects shown by real
2-2 electrolytes in the very low coneentratinn region (lower than the region
cavered by table 7), such as negative deviations frorm the DHLL for the osmoric
coefficient, appear in SL6(P). The leading terms in the Maver expansion are
the DHLL term (£%12zrpy and the renormalized second virial coefficient B.fx),
The sum of these two, known as the DHLL + B, approximation, behaves fquite
differently from the SLG{P) when applicd to 2-72 electrolvies at low concencra-
tions. This difference is illustrated in figure 4. The reduced free ENETEY in
the DHLL + 8, approximation is, relative to the ideal gas,

k2 Balk) -
= = +.7
{ﬁ”iJHLLw—H: ]2'-'7}3 P I: ]
wherg
E,.[;:J = =2 2 Z] Py _! [':1 "-L.Fﬂ'u} exp ':'?l'..i}_ 1 _EFI:J ré dr, (4.8}
r=1 = 4 G
7ij= = Beej exp (—wr)fer, . )
and ¢

fi=exp { “7!3”1':']} =il

is the Maver f-function of the reference system. In {4.9) &, =20, is the charge
on the ith ionic species whose number density is p, € is the dielectric constany
of the solvent and o is the total number of ionic species.

It is clear from inspection that the ®*12z0 and the term

= a
b EHEEPEPJ [f f:‘;n [1 "‘:JPIEJ'J redr (4.10)

are included in SL6 and hence SLO(P), and it is equally clear that the rest of 3,
is not included in SL6. It is not as immediately clear whether the terms in
SL6(P) bevond SL& itself include any further contributions from 8 but a
comparison of the relative orders in x and FeZfea of SL&{P) with the rest of i
shows that thev are indeed disjoint, so that one can identify the expression piven
in (+.10) as S5L(P)n A,

irz
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Figure 4. Approximations for the excess energy and csmotic coefficient for charced hard
spheres versus the square toot of the jonic scrength for 2-2 clectrolyres with a=
+2A, r=28"C, ¢=78159 and Flaeidln T= — 1:3679, The energy symbaol £
means energy per unit valume, and A is in this figure used to denote the differemce
between actual approximotion and the Debyve—Hiickel limiting law. Curve g is
the DHLL + B, approsimatien (4.7}, curve & the SL&IP) 1B, and M5w H, approxi-
mations of reference [[4], curve ¢ the hypernetted chain results of Rasajah {28], and
eurve o the SLA{PY and M3 resulis,  Notice that the anormalous deviation from the
DHLL in the energy iz positive when dIn g8 ln T =10, s the lonic strength,

Pefining
AB, =8, —-5L6(P)n 5, (4.11)
we have
SL&(P)uB, =5L6(P)+ B, - SL6(P)nA,
=5L&(P) + AR,, {4.123}
where

AR, = — 2w _E::I E:' PiPs !: (1+f,°) (exp {g;;)—1 -E;-a'—!) ridr. ($.13)

A similar analysis shows that the corresponding A8, for the mean spherical
approximation is also piven by (4.13).

Since AR, -0 as Be?fe s when a0, the SL&6(P)oB, approximation
(+.12) saturates as the SL6(P) approximation in this limit. The SLA(P)w B,
also has the correct limiting behaviour of DHLL + 8, as Betle =0 or p i),
Moreover, the SL6(P)uB, gives essentially the same deviation from the DHLL
as docs the DHLL + B, This is clearly apparent in figure 4 which shows the
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Figure 5. Co-existence curves far che RPA] as proedicted by the =LA and SLoPr &,

approximations.  The reduoced winperature 7% ig here defined as e Ze? and x = ca-

iz the reduced density,

deviations from the DHLL of the excess cnerpy and osmotic coefficient in
different approximarions [23, 28] for the 2-2 electroivie modelf. The
SL6(P)wB, approximation is, in general, an improvement nf the SL6(F)
approximation for the cases of 1-1 and 2-2 clectrolvies.  Results are summarized
in tables 6 and 7. At the higher concentrations, we note that the A, correction
vanishes for both svstems, :

Recemly Stell et al. discovered compelling evidence for 4 phase transition
in the restricted primitive model invelving a critical point at very low density
[14]1. The SL6&(P)ud, is an approximation that should be well suited to
mapping out the qualitative features of the phase surface over 1 wide range of
“T and ¥, and we have nsed it here to explore the critical region, along with the
SLGO(T) for purposes of comparison. Both approximations vield a critical point.
The veo-existence curves are shown in figure 5. Our estimates of the critical
constants are L% = 00743, x, =(-0098, and =, =0-091 in the SL6({T) approxima-
tion, and T ¥ =0-0832, v, =0-0096, and z,=0-38 in the SL6(P)u B, approxima-
tion where 7% = ¢u/fe® and 3= pa®.

This investigation was supported by the Norwepian Research Council for
Science and the Humanities, which made it possible for J.C.R. to spend 2
month at the University of Bergen where part of the work was done, I.C.R,
also thanks the Science Research Council for suppart at the Roval Holloway

t The cxcess eneroy E°% is the internal eneroy per unit volume for the svseem
rr:u]lfpi[l.'d I]:ln* |:]. +¢ ln tl.'(-= I T:I., \\.‘hurﬂ' €15 the du:i,r:tr[;_; COMsrant :Ir'ld T is the tempera-
ture. E¢%f where [ is the ionic strength, is proporrianal to the hear of dilunon [24).

I We take this epportunity to call attention 1o the Face that the teanscription af Larsen's
equation given hy Stell and Wu [12] contains several misprints 1 In their cquation (11,6
B7) should be d{nI**2 Immedistely below that equation U should he Mzedt ! ook,
and 19912 is the coefficlent of n%*, not 7, i the expresson For b(w),'din).
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College {University of London) and at Oxford University, where the work was
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APPENDIX A

The density expanston and extended virial approximation of two-body
integrals 1,498 (x). :

The first terms of the density expansion of the hard-sphere radial distribution
function are [29, 30]

g5 (x, )= exp [ BuM® (p)][1 +2g,(3) + 2 £a(3)+5° g )+ O()], (A1)
where u®® (y) is the hard-sphere pair potential.

One has a simple analytic expression for the coefficient g,(y), and convenient
tabulations of g,(¥) and g5(y) are provided by Ree et al. [31]. Substitution of
(A 1) into the definition of the two-body integral [, H8 (x), (3.9), yields a density
expansion of J,H8 (x): -

139 ()= ¥ T, '+ O0(). (a2)

The coefficients J , and J; , may be found analytically as

dor
= : 4 A3
Jﬂ.ﬂ H“'S 1 ﬂ3 I: }
and
I =mt (E—Hn 2) (n=4)
2
=’_;., (é+ln 2) (n="6)

s Ghmn_ ] p-a_ ] .4{23_“‘_1} 2 ;
" (12{6—:«:]_ PR 3[3_n}"‘) (m=5and n>6). (A+)

The coefficients J, , and J; , have been calculated previously for a=6, 8, 10,
12, 18 and 24 [3], and for n= 15 [1], but for the sake of completeness we present
in table 8 the entire set with » ranging from 4 to 24+ The numerical estimates
of J, , and J, , have been obtained with the aid of a highly accurate version of
the usual Simpson's integration rule.  This version is discussed in Appendix D.

Since numerical tabulations of g"8(x, ) from Monte-Carle calculations
exist for several densities x, we have also calculated [™5 {x} numerically from
(3.9) for these densities, again using the Simpson’s rule discussed in Appendix D,
Combining the known density expansion of 7,79 {x), (A 2), with these results,
an approximation for f M¥ (x) has been constructed in the form of an extended
virial series :

1,18 (1)~ g: Pt (A 5)
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Table 8. Coefficients of the density expansion of the two-body integral /o™¥ () with

EET k4L
; Max. error

m Jun Jin Fin Jsn Jin Jin {per cent}
4 125664 3-BE24 —0817 —0-0845 0-7312 — 05302 (-1

5 62832 3-1899 0-5226  —0-DR35 o-10%7 = [-0963 -1

4] 4-1834 2-8287 0-B331 a-037 B EEE =086 -1

7 31416 24674 3-9823 0-1565 0-0901 -00734 02

B 2-5133 2-1705 1-0423 (2596 01007 — 00573 2

9 2-0%44 1-9465 1-0533 03360 1355 —-0359 02
10 1-7952 1-7551 1-0376 03890 01361 —J-00K2 02
11 1-5708 1-5957 10079 0-4217 0-1740 o023 03
12 1-3963 1-4614 09716 O-dd48 (-1 846 00543 Q-3
13 1-2566 1-3470 (-9326 0-4562 {1506 0-0865 0-3
14 1-1424 1-2486 83934 0-4 608 01921 01180 0-3
15 10472 1-1631 8552 * 04506 0-1913 (- 1465 03
16 0-9666 1-0832 8186 0-4564 01864 01743 a-3
17 0-8976 1-0221 0-7841 - 4580 01801 0-14999 03
13 0-8374 0-9635 7517 04437 01721 02332 03
19 07854 9110 0-7213 0-4354 1637 0-2440 03
20 07392 8639 069340 0-4266 31546 0-2630 -3
11 6981 8214 0-6646 04175 0-1450 0-2802 0-3
22 6614 07828 0-5420 0-4083 0-1353 [-3937 0-3
23 06283 7476 N-a191 0-39%2 0-1259 0-30%3 -3
24 05984 7154 0-3977 3-3902 0-1165 0-3216 0-3

The coefficients J, , and J; . have been estimated by a least squares fit of (A 5)
to the values of 1,9 (x) calcuiated from (3.9), and our results are given in table
8. The maximum deviation observed in the approximation (A 5) from the
exact result iz given in the last column of table B.

The Stell-Lehowitz theory [10] applied to charged hard spheres involves
integrals that are very similar to J,%8 (x). In particular, we need in §4

fﬁ“ﬂ(xja'!-:r}n{g"s{x, yi—1]y*dy; O=nr=gl (A 6)
“.

- which, without the risk of confusion, may be taken as a definition of [ M3 (x)
for ~—1<n<2 We have estimated these integrals, following the procedure
described above, and the results are summarized in table 9. No serious dis-
crepancies between these results and the results of Stell and Wu [12] has been

Table 9. Coefficients of the density expansion of the two-body integral Ja¥5 (x) with

-1l=nr=sl
Miax. ercor
" Jo.n Jia Jra Jan Jun Jin (per cent)
-1 —31416 123135 —30-0085 559838 (-3 {er) (e}
0 — 41888 93213 -=15-1386 20-2B04 -—19-4613 83160 ii-1
I - 52832 72377 — 74281 68207 =52313 20478 -2
I =12-5464 57571 — 33758 1-9394 — 09212 Q2105 -2

{@) MNn reasonably good fit of the extended viriai approximation has been found.
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found, and our results have been used in § 4 because of the convenience of the
extended viriai approximation.

AFPERDIX B
The density expansion for the triple integrals 1,3 (x) using the
: superposition approximation

The triple integral [, .28 (x) defined in (3.12) is evaluated here for triple-
dipole (TD), dipole-dipole-quadrupole (DDQ} and dipole—quadrupole-
quadrupole {(D(QQ} interactions by employing the superposition approximation
(SA) for the three-particle correlation function g;4.° (R, 5, #), and the procedure
described earlierfor triple—quadrupeles{TQ)[1]. Wealsopresentsomeadditional
analytic results for triple~quadrupoles, viz. J;!'¥, which were not available earlier.
Briefly, what we have done is to calculate the density (x) expansion for [, 18 (x)
up to O(x*} with aid of (A 1). 'We have also calculated the integral numerically
using the full pair-correjation functions in the SA.  This enables us to suggest
an extended virial series approximation for J,,,,."'% (x), similar to the approxima-

tion for two-body integrals discussed in Appendix A. '

By using the SA and bi-polar coordinates, {3.12) can be written as

X

Liripre’ " () = 8r* ! (IP(R; [gls), glr)])+ III(R ; [g(s), £(r)])}e(R) R dR

+82 [ (IR [5(5), 1)+ THOR (565, 5())
+IIR; [5) sOD}sRIRR, (B 1)

where it is understood without further specification that the radial distribution
function g{ } refers to the hard-sphere system. The kernels in (B 1), e.g.
IR [gls}, glr)}]), arise from the integration of (3.12) over different regions of
r and 5 as shown in figure 6 ; the number of such regions depends on whether
A is less than or greater than 2. The definitions of the kernels, which are given
in I, will not be reproduced here, but it mayv be useful for the reader to recall

Rz2 i

2l +q

1:R=2

lgmR+1

refA+n

Ve A

Fipure 6. Integravion regrons of fegae!!™ with use of the superposition approsimation lar
the three-parzicle corcelation function gi.5'"% and bi-polar coordinates (I3 ).
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that they are integrals over the variable s {see figure 6) of the product of sg(s)
and certain linear combinations of the functions K{R+s; [e(r)]), K(R-5;
[2(r)]), K(s—R; [g(r)]) and E(1; [g(#)]), which are defined by the following

indefinite integral over r:
q
Kl:'? i g = .l- gl:?:”‘{rtrip]e{ﬁr 5, ¥ dr. (B 2)

The integrand in (B 2) contains the angularly averaged three-hody potential

IF-I:r'i|.'|n|ll:|["";ail & .F] [ZU] 3 : . .
By using the density expansion of the three hard-sphere disttibution

functions, (A1), we get the first four terms in a density expansion for

"rh'lnnle-l-l5 f.t‘} :
Biripte™ (x)=J, + Jox + Foot 4 Jox® + Ofa). {(B3)

, the

If we denote g, by S by === g by e and g, by
cocificients J, may be represented graphicallv as follows :

{a) for TD and TQ:
b= \r tew 4-3 A (B4 BS)

e (B6)
SR AN (B7)

(8) for DDQ and DQQ :

-'q'|
PR A AT AT AN (B 10)
J3"2.;3+&+2 ‘:ﬂ +8 .f'fk
. A+ A : (B 11)

All of these graphs represent integrals ; the vertices may be regarded as field
points at which dipoles or quadrupoles reside, so that there is also an angularly
averaged polar interaction and the factor exp ( — fu!''®) between adjacent vertices
in addition to the gy, gy, g2 or g; bond which links them. Under {a) an open
circle denotes the presence of either a dipole or a quadrupole, and under ()]
each large dark circle represents a dipole and each open circle represents a
quadrupole in the case of DDQ triplet interactions, and vice versa for the DQOQ
triplet terms.  In tables 10 and 11 sur numerical and analytic estimates for
each one of the integrals represented by a graph are given. These were obtmned
az follows :
From {A 1} and (B 1} we find that

Jo= B2 [ {IF(R: (L)) + FFI(R; [1, 1])}R dR

=" s

a

8% [UR: [LAD+ R {11+ KR, [L IR 4R (B 12)

with analegous results for J,, J, and J,, as discussed below.
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Table 10. Graphs which contribute to the density expansion of J'.:,.h,],_.-ﬂs {z) for triple—
dipofes (TD) and triple—guadrupoles (T,

TD TG
16-4493 532059

e

66032 429:116

43
_ PY - 1-7648 109-767
‘A., exact - 14060 138427

»

SN, 38735 372892

2y _0:3017 121-846

2
e emact - 0-0794 147614

ﬁ PY = {-4001 - 16:339

exact —1-17135 —40:015
r e
g 29173 344927
o represents a dipole or quadrupole, and ——— =g, - - —— =g, oo = g; and

bt _ N

Az in the case of triple—quadrupoles, it is found that
I(Rs [gls), 11)={I1(R; [g(s), 1])=0 (B 13)

for all combinations of dipoles andfor quadrupoles.  In particular, the analysis
leading to (B 13} implies that

fR; lgalsd 1N =LIHR; [gals) 1])=0; n=0,1,2,3. (B 14)
From this it follows that for any combination of dipeles andfor quadrupoles,

Jy=8x2 f IR 1, ljjfedmswﬁfnm; [1, 1)R 4R. (B 15)

Some further algebra leads to the following explicit results for the kernels :

—(R—=6R1) for T (D 16)
MR, [L1])={HRP—BR+16RY) for DDQ and DQOQ (B 17)
HSRI-J6R+ 48R+ 64R7) for TQ {B18)
and
—3R% for TD (D 19)
R [1,1])=
] for DDQ, DQQ and TQ. (B3 20}



1014 B. Larsen et al.

Table 11. Graphs which contribute to the density expansion of Fippe!3 () for dipole—
dipole-quadrupsles (D) and djpq]c—quadrupul::—qundru;‘rcriaﬂ (D).

BY

ENALT

/}\ FY

pxact
-~
L
2\
o,
E PY
il eXECE
PY
ﬁl cxact
PY
ra'.
LS cxact
PY
.‘}; exact
PY

i'--q}l exact

DD .
139-4906

- 671805

167-5747

— 136752
—9-0750

214018
28-3570

37-382%

Gh-2169

— 84645
— 16-0032

- 92982
= 104689

- 59914
= 3-9501

26-4065
32811

=1-56135
234138

+3-5745

Loo
139-4906

107-5747

B3-7731

21-4619
283571

0271
51150

95:0517

727141

- 32082
— 16-4689

= 73830
- 15-1330

30-8373
371740

6-3514
10-9260

216993
264960

FO-5214

Under DDQ, @ represents o yuadrupele and o a dipale,

The oppasite hnids for OO,
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“The results for TQ were obtained in I, but arc included here for completeness.
Using these results in (B 15), we find that

5'312 16-4493  (TD) (B 21)

= 2
ATy ‘*%”:139491 (DDQ and DQQ) (B 22)
[5472=53296  (TQ). : (B 23)

J, for TD agrees with an earlier calculation by Rushbrooke, Stell and Heye [2].
In what follows, it is convenient to discuss the remaining coefficients for TD
and T'Q interactions scparately from the DDQ and DQQ interactions, because
the results for the latter were almest entirely obtained numerically.

In the case of triple-dipoles and triple—quadrupoles, the expressions for J,,

Jy and J, are
gkl
Jy=24=2 ( IINR; [1, 1))g(R)R dR, : (B 24)
; s

2

=240t § IR (1, 1DeiRIR 4R [ IR [1 1) RIR 4R

+ [ IR [gs) e RIR cue], (B 25)

T T—

,r:,=+an=[ IR ; {g4(s), 1])go R)R dR

+ f IHR; [g;isj.lllngR}RffR}
+24w2|: ! IR (L, 1])ga(RIR dR
+ E IR [1, 1e(R)R dR]
+ Bt I[ f!'(R; [2:(s), galr)])g (R AR (B 26)

Using (B 16) :und {B 18) in (B 24), we immediately have

2373
3—;- =19-8096 (TD}, (B 27)
f= :
4923
("T‘-S——EE'HD, 2)w3=123?'35 (TQ). (B 28)

In(B 25)and (B 26) the terms involving JF{R ; {1, 1]}are zero for TQ according
to (B 20). The various other kernels in (B 25) and (B 26) have been given
earlier for TQ so we will only quote the results for TD. We find that for
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r riAs1

QiR

T
im]=f

. 1=sA=2 4
ll- 4t
3 ?h-_
At £ : K
L
1

Fipure 7. Integration regions of fve!® with use of the superposicion approximation for
the three-particle correlation function /.41 and bi-polar coordinares (C 3.

triple—dipoles -

s s B Wiz g S Hln2ye
IP(R; [gis), 1])'“[(ﬂﬁ_¥) R+(43 iz )R
272N AETnE N
+(ﬁ‘ 2 )R +(”1152+ 56 )R ] (o)
B 2 !
II[R r [a.El.I:E:I- l]_}='.n‘ [(_m—g—ﬁlﬂ (-‘-’R‘-‘:"I)) R+E
it 2 R e P
+(33+_E" (Rﬂ))ﬁ" oS +(38¢ 3 e

11 193 37,
aRE (123 %" ( ) ] gk

and

' 1 In2 (In2)®
(R [g(5), El{’}l}=”=[d(m+%ﬂ+{iﬁ¢} )R

e sin2 (I 2 e e RI RO I 2 (s ) Ty
+(23m 28 18 )R +(512 T L i

f1163 1431n2
ad -5
+(1332+ 1152 )R ] ke

The analytic expression for g, [30] has been used in evaluating these kernels.
To proceed further in the calculation of J, and J;, we need the coefficients of
x*and ¥ in the density expansion of the hard-sphere radial distribution function.
The coefficient of x% is available analytcally [32], but g5{ ) is only available
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- mumerically as a function of the interatomic distanee [31]. In the Percus—
Yevick (PY) approximation, however, the cluster diagrams which contribyte
to g5 ) are known in closed form [33], and one can show,

9 T ] 5 4 T9 A
gal“'{.’?}l-—.m.-ﬁ( R RT 2Rs R* 191R* 77R

453600 2520 545 750 " TR00 * 413

443R* 1789R 22843 4433R-1 e
260 T 1440 T 32630 25305 (I<sk<
: R R 4R R GIRY 205R
226800 7 1260 945 43 T 350 " a3z
I91Rt 1141R 20323 29683R- Gy
T252 288 " 4336 T Fmagn ‘
of R R' 2R R* 28Rt 8RY
=7 e — e e e T 0
453600 2520 945 190 228 T35
128R* 128R 11264 2048R-
315. ~ 45 ' 2§35 1575 ) S
—0 (#<R). (B 32)

We have not found this expression given explicitly anywhere in the literature.
Using (B 32) and the analytic expression for 2:7'Y (R), we find that

(@) For triple—dipoles :

43915621 e6061 361 16
PY _ 4 ak I Bl s
i [ﬁmmu o080 " 2+ g (m 2~ In 3]
63321 , (B 33)
and

132783090133 788788550 456805
PY .5 et P i o 2
i [ F000752000 25401600 " 2+ gogg (10 2)

' 12 kel
- HIn _E}F*-A*J;i";-d!;ﬂ1 In 3—T§§ (In 2)(In 3:|+122 GJ

= ~ (0932, (B 34)

where in (B 34)
: k]

G= | R*In(R~1)dR=~0-147221 (B 35)
2
cannet be expressed in closed form,

() For triple quadrupoles,

50669383667 1552087 345
% ”4[ 88300760 1792 "2tz (e 21]

= 14479762, {B 36)
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and

10008765268937921 18084526909 37657
BY _ 3 i 2
LT [ 13352435712000 15052800 "2+ —5p (n %)
3 8559 . 20079 20079G

g (In 20+ 5575 In 3= (In 2)(In 3) +

= 1026-3847. (B 37)

The result for 7,7Y for TQ has been given in I, and is included here again for
completeness.

"The other estimates of 7, and J, for TD and TQ given in table 1 have been
obtained using the 5A in connection with the exact Lol ) and gof ) coefficients
for hard spheres, The final integrations (B 25) and (B 26) were done numeri-
cally using our analytic expressions for the kernels and the tabulations of 2 H)
and g4(R) given by Ree ef al. [31]. Our analytic and numerical work on the
integrals which contribute to J, and 7, for TD and TOQ is summarized in table 10.
: For the unsymmetrical DDQ and DQQ we found it easier to determine all

but the most elementary kernels of J,, J, and J, numerically because relatively
- simple expressions like (B 24)-(B 26) are not obtaincd in these cases. We
followed the numerical procedure described in Appendix D, replacing the full
radial distribution functions g{R), g(s) and g{r) by the required combinations
‘of the coefficients in their tespective density cxpansions. As a check on the
procedure, the analytic results for TD and TQ were compared with the corres-
ponding numerical estimates, and the numerical error was never found to be
greater than 0-1 per cent. Internal consistency was also checked by evaluating

diagrams (see (B 9)«(B 11)) giving equal contributions, e.g. 2,  and P

separately, and che inconsistency was never found to be greater than U-1 per cent,
The results for DDQ and DQQ are given in table 11.

ApPPENDIX C
Densty expansion of the triple-charge intepral 1778 (x) using the
superposition approximation
We define Jpc™S (x) by (3.12) except that g,,,H8 is replaced by h,.,H8 and
Witipie 18 now (Rer)=t,  In bi-polar coordinates this becomes
R+1

@ w
IpcR9 (x)=8n? Ill' dR ! ds IR!:JI Froa™® (R, 5, r) dr. {C 1)

Since we have A,,,7% instead of g,,,"9 in the integrand, the method of intcgration
used in Appendix B has to be slightly modificd. Use of the superposition

approximation {10]
a2 (R, 5, 7} = A(RYA(s)h(r) + A{ RYA(s) + R R Yh(r ) + h(s)hir) (€i2)

' converts {C1)1te

e ) § Ry eR [ ba)ds [ ir) dv
B'ﬂ" 3 ] | B = |

+3 J K(R) dR [ HENREs— R34y (C3)
a 4
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~where 1t is understood without further specification that the pair correlation

functions A } are those
to define (see figure 7)

AR [As),

and

B(R; [As),

for the hard-sphere system. It is now convenient

I—R R+1s

)= _!-' his) ds |R'£-| Mridr Rgl (C 4)
= R=1 {C 5)
kir}]) = .l fﬂ his) ds I:j:ll hirydr Rzl (C )
= f Afs) ds “J:_[iil hrydr R=1l {C7}

These are somewhat similar to the functions I{R ;. [g(s), g(r)]), etc. which

appear in Appendix B,

It is also convenient to define

&
C(R; [his}])=2 | h(s)sds (C 8)
1]
Table 12. Functions for triple-charge integrals,
AR [Frgfs), fglrd]d Bl [fgls), helr)])
—IR*+ 2R 0=R=§) % MM=R=4)
JR? ;
(1-R)y (F=<R=1) —S5+4R-1 (F=R=1)
RE
0 1=/ ?uzﬂ 2 1=R=l)
0 (2=R)
B(R; [hds), fulr)]) BIR; [h(), 2yir )
RS R 4R® BOR 39 492
"(m‘TT‘ETm) (e Rl sagpe )
R 7B 9R' 458 189
e (m“ﬁ“‘a‘"T‘ﬁ+ﬁ) E=die)
CUR G [Alin]) CiR; [An)])
R IR 4R* 7
— R R | Ty C. U e B ol 3
R =R=1) (:m 3 +3 m) (M=R=l
11=
=] 1 m— =
(1=R) 0 (2= H=1)
DR =)D DR [A )
IR'-2R (0<R<1) n(-§+m-3_?+zﬂ) (=<2
] {1=R) ] (2=r
LR H
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and
D(R; [Ms)])=2R [ h{s)ds. (C9}
Then (C 3) can be written as
To M8l iR :
‘E‘%.-‘Ed [ TA(R; [A(s), Mr)])+B(R 5 [(s), Mr)])JUR) dR

k4

+3 ] [C(R: [Mo)])+D(R: [H:)DIAR) 4R, (C10)

The advantage of writing (C3) as (C 10} is that in certain ranges of R, the
functions A(RK; [A{s), k{r)]}, ete. take on simple anaiytic expressions, or.are
identically zero (see table 12},

Emploving the density expansion for A( &),

Rz, R)=exp [— Bu¥ 3R [fy(R) 4+ xhy () + 2% ha{ R) + 2% A (R)+ O(x*)] (C11)
where hy{R)=1—exp [BuM2(R)] and /1 (R)=g,(R): m=1, 2 and 3, and the

corresponding expansions for h{s) and B¢}, we get the density expansion for
the triple-charge integral

Ioc™® (x) =Sy + wdy + 20 T+ 58 S+ Ox). (C1z)

The coclficients in this expansion may be represented graphically as
e :;_'J}.‘E +3 AR (C13)
Wime P : (C14)

s Al et o (C15)
.} 2 B
s TR e e et s A e ()

where we have used the same symbols as in (B 4}-(B 11} of Appendix B except
that the bend now represents fr,. As before, we have ignored anv
explicit representation of the triple-charge potential and the factor exp ( — Futl®).
Each one of these graphs can be caleulated analytically, using the exact /r, and
#,, and the Percus-Yevick (PY) approximation far #, and A (note that /i in the
PY approximation is given by (B 32) of Appendix B). Since A R), #(R),
A R) and Ji(R) are zero beyond r=1, 2, 3 and 4, respectively, and all except
hy( &) are zero for R <1, it follows from (C 10) and (C 11) thae

T
T g{f?[*'?: [*’ru{ﬂ-a’fu{f]]}**-#iﬁ: (Bgls) Alr}]) g R) d R

+3 [{CO(R; [Ads)])+DIR; [} M RY4R,  (C17)

o

DR [Rals) dlr D {RY SR+ 6 _]: C{R; [Ay{s)]M(RYdR, (C 18}

v ]
3
[E-]
I
[F¥]
ey g
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L 3 j B(R: [hyls), hfr)])m{R) dR+3 [ B(R; [ho(s), ho(r)])helR) 4R

- Bxt

3[ACR; [u(s))+D(R; [fs)])}an(R) 4R

3

+6 § C(R; [hols)(R) dR,  (C19)

== f B(R; [Bals), (r)])in{R) f”?+f>; B(R:; [Mls). hy(r)])ha(R) dR

+3 $ B(R: [hofs): Ao(r)])hs(R) dR+6 [ {C{R - [u(s)])

+D(R; [hyfs)]) Vool R) dR+6 ] CLR: [hols)])as(R) dR.  (C 20)

where all the kernels that arve identically zero {sce table 12} are left out,  Except
for the factor 8=% the integrals 1o (C 17) to (C 20} correspond exactly to the
graphs in (C13) to (€ 16). To caleulate the funcrions A(R; [A(s) Rofr)])
Etc , we spl[t the range of integration over & further inte the intervals {0, §),

13 (1, 2) and (2, o) (see figure 7) and make use of the exact analytic expres-
51{an for J':,,] and /4, obtzining the results given in table 12, -f'uppi].-rmg this in-
formation and the analytic expressions for /g, &y, 5TY and 5" to (C 17), (T 18),
{(C 10} and (C 20), we find that for triple-charges

Jo=12x*=118-435, (€ 21)
11=—f’.n=_—135 -004, ' (C 22)
30
[10356583 648, /3
Py g s s -1 =221
FALEE [Iﬂssmu 35 In (2)} 221-921, (C23)
: 53939920627 114497 54567
BY =
/s {2?941;&000 SO AT 3}
= = 247-075. (C24)

The expressions for the individual graphs are given in table 13,

We have also calculated J, and J; by using the exact values for &, and ki, in
{C 19y and (C 20). With the analytic results for the kernels, only the integration
over  had to be performed numerically. The results are summarized in
table 13.

ArpEnmix D
Numerical caleulation of the triple integral 1, 119 {x) using the
superpﬂnt‘mn appmxrmafmn

In the numerical caleulation of £, 1t also appears useful to split the
integrations into the same regions as those deseribed in Appendix B, This is
because the long-range behaviour of the g(r) is essentially given by its low

Jul
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Table 13.  Graphs which contribute to the density cxpansion of fre™® (%)

4

— 394784 73929

L
o PY 3-3226

4o

A

A 52-6379 Pt o 26540
dy :

VA

PY - 03611
10-675% P £xact — 09374
Y » PY — 2581708
fﬁlb — 361739 e EXACT — 263373
4
A Py — 1741564
SN — 12-9567
S . ‘/\n exact - 21869
PY 2-8212
“‘L'-’ . exact 333462
gy 38:0530
] PY 230279
./"'-,., exact 212108
Sy = By, e Sk and e sy,

density limit to which (B 13) applies in the case of hard spheres. Thereby the
problem with long range integrands (O(r=%) in the case of triple-dipoles) is
considerably reduced.  We are then faced with the prablem of caleulating the
triple integral (B 1) numerically.

Provided the triple potential 1, ;. can be written

IV¢F|PLE{RF L T}= E EH{R, .!':I?" {I] I:I
(which always applies in the present case), one may tabulate
T
RINT, (g) = J' hiryentl dr, (D 2)

where ifr)=g(r)~1, in the beginning of the programme. Whenever a kernel
of the type (B 2) is needed, the corresponding table values of RINT are looked

up:

Kig: ()= TeiR s) [%+RINT.L{qJ]: ns -2, - (D3)

and the triple integral is in effeet reduced to 2 double integral.
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The actual integration procedure emplaved is a Richardson ext'rnpnlaticn of
~ Simpson’s 1j3-rule, and will be briefly described in the following. Suppose

a continuous function f{r) is known at 4n+1 equidistant points. Simpsen's
© 1{3-rule then gives an estimate for the integral

[
I= ] ftrydr _ (D 4)

which is
12 00 =30 (03) + 4+ 2fra) + o441 + [Caan)ls (D'5)

where Ar=7,—r, ;, ry=a and r,,,, =6, One may show that [14]

Izl‘f_‘ﬂ"'f, {D 6}

the correction term ¢ being given by
AR " £
¢ =(b—a) Je- I9N£), (D7)

where f'%( ) is the fourth derivative of f{ ) and ¢'some value s £ £ <b.  [f now
every second poimnt of the tabulated function is used to evaluate

39,1:% [firy) +‘.F,I’[r3] +2f(ro)+ - (g ) + (i )]s (D 3)
we have |
I=8,, +¢; (D9
e 16{Ar)t S fHIET
C=(b-a) 5=t ) = 16e T (D 10}

For n sufficiently large, one may approximate FOH(E Y o f9 (2), which yields

e =~ 16¢ and
I=5,,+e~ 5, +16e, (D 11)

which can be solved for . The result is a very accurate estimate of I [35]:
{=(165,, - 5,,)/15 (D 12)

which is obtained with little extra labour compared to the ordinary Simpson’s
}{3-rule. A complete description of the programme is given clsewhere [36)].
Each of the kernels /(R [o(s), g(r)]), ete. of (B 1) was calculated according
to their definitions and the pracedure described above with s = Ar =003, and
tzbulated at intervals AR=0-05. The inteprals were truncated at R=35-9,
s=6:9andr=128. In addition to the tests of the numerical aceuracy deseribed
in Appendix B, some calculations were performed with truncations at B=12.3,
§=13-3 and r=256 (when PY radial distribution functions were used), and
the differcace in 7" (x} between the twn sets of data was never found to
exceed 0-05 per cent at any density. The effect of reducing the intervals to
AR =Ar=Ar=0-025 was also examined and always found to be less than
0-15 per cent.  For triple-dipoles {(TD) the integrals were truncated at =
PI63, 5=12:65 and ¥ =24-3.  Since FHR; [1,1]) is non-vanishing for TD, a
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. )
correction 3=%(4/3) | dR/R=0.0222 (see (B 19)) was added to the numerical
: 1185

results for fp78 ().

The results of the numerical calculations of [y, 2% (x) for TD, DDQ,
‘DQOQ and TQ using the PY and exact radial distribution functions for hard
spheres are given in table 14. These data were used together with the density
expansion of 7.9 (x) to obtain the extended virial approximation of the
triple integral which is discussed in § 3.

In the case of triple-charges {(TC), the superposition approximation was
again assumed and the numerical caleulation was based on {C 3). The problem
with the discontinuity of A{r) at r=1 was solved by defining

A(r) =h(r) —exp { - Bl Yiy(r), (D 13)

where Ay(r) is the coefficicnt of #? in (C 11). Intraducing this into (C 3), and
making use of the results listed in table 12, we get

Lm;:‘{x}=$+3 :[ B(R; [&ul:g:" }Jg{rJ]]MJER} a8

+3 T B(R; [Ak(s), ky(r)]}AK(R) dR

6§ C(R; [s))AKR) dR+3 | {C(R; [Mk(s)))

+D(R; [AK(s)))}AMR) dR

+ ? AR)YdR j:? AM(s) ds I Alfrydr. (D 14)
t 1

max (i, [R-+]

Table 15, Values of FrcH® (x) a3 obtzined from the numerical intepration with Percus—
Yevick (PY) and exact (ex) hard-sphere pair-carrelation Functions,  Caleulations
were done with ARl = As= & =005 and truncation of the intepral ar R=12:15,
§=1315 ancl r=25-3, and AR = As= Ar =004 and truncation ot R=t=r=8-0 in
the PY and ex cases, respectively. A Fourier transform methad was applied to the
PY casc only, as o check,

Bi-palar ecardinates (D14}

Fourier transform

x PY X miethod
0-5 61-5872 : 61-5372
O-66B45 51-Ba0s ¥1-8032 31-7928
0-7 S0-3970 3202
076394 477431 47-6156 476305
0-8 464122 +5-2588
(85544 +4-6725 4706 5041
0-89741 +3-6394 +3-5914 434431
-9 +3-5763 +3-3774
093583 431016 +3-2271 +2-B603

I-0 22-1490 41-8528
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All terms of (D I4) contain only funetions that are continuous in the actuz
integration regions, and all but the last term are one or two-dimensional integral
that are readily calculated numerically. The last triple integral of (D 14) i
now well suited for the procedure described earlier in this Appendix, excep
that {3} is modified to

Kig; [Ak(r)])=(Rs) RINT_,(g). (D13

The caleulations were carried out with AR =Ar= Ar ={-05 and truncatic:
of the integrals at R=12:15, s=13-15 and =253, and AR=As=Ar=0-0-
and truncation at B =s;=r=238-0 with the PY and exact hard-sphere correlatior
functions, respectively, The results are given in table 15, The results obraine:
by a Fourier transform method using the PY correlation functions are alse
listed in table 15, and the two sets are found to agree within 1 per cent at ai
densities.  The effect of reducing the truncation distances to & =§-?5, =077
and r=12-5 in the PY case was also found to be less than 1 per cent.

The results of the numerical caleulation of I U5 (x) were combined with
the density expansion results given in table 13 to obtain an extended viria
approximation for the triple-charge integral, Our estimates of the coefficient:
Ay to Jy are given in table 16.

Table 16,  CocHficienss of the extended virial series approximation for fre¥%{x). Label:
PY " and ' ex' refer to the use of Percus-Vevick and exact hard-sphere pase-
correlation functions.  The cocfficients J, and Jf; were derermined by a least squares
fir of the approximant to the results given in table 15,

Ta gy gy 5 I, I,
PY 118435 —185-004 221-921 = 247075 212-330 — 79-399
=x 7 118435 — 183004 213-163 =210-360 159-336 — 54204
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