MoLEcuLAR PHysics, 1970, VoL. 18, No. 2, 249-260

Upper bounds on free energies in terms of hard-sphere
results

by JAYENDRAN RASAIAHft

Department of Chemistry, State University of New York, Stony Brook
New York 11790

~and G. STELL

Department of Mechanics, State University of New York, Stony Brook,
New York 11790

(Received 10 September 1969)

The GiBbs—BogoIiubov inequality is used to develop a first-order
- perturbation theory that provides an upper bound on the free energy.
Charged systems as well as a system of Lennard-Jones particles are discussed,

and detailed numerical estimates of the bounds are presented.
a

1. INTRODUCTION

; We consider here the use of a simple inequality to obtain upper bounds on the

Helmbholtz free energy per unit volume F of a classical statistical mechanical system
in terms of the free energy and pair distribution: function (radial distribution
function) g(r) of a suitable reference system at the same temperature T and density p.
These bounds are also’ equal to the sum of the zeroth and first-order terms of a
perturbation expansion in a strength parameter A for the system under consideration ;
the unperturbed system in the perturbation theory is the reference system used in
obtaining the bounds,

~ For a system with a Lennard-Jones (L-J) pair potential we choose a system with a
hard-sphere potential as our reference system and give detailed numerical estimates
of our bound, which proves to be of sufficient accuracy to provide a reasonable
approximation for the free energy over a wide range of densities and temperatures.
 We also discuss the bound for a system of charged particles. For this case the
choice of the uncharged system as the reference system yields a bound on BF that is
exact through first order in 8=1/kT and second order in ¢, the electronic charge.
In the case of a symmetric system of charged spheres it reduces to the statement
‘that F< FHS, where FHS is the free energy of a system of uncharged spheres at the
same pand T. These simple upper bounds complement nicely the lower bound on
F that immediately follows from Onsagers [1] well-known lower bound on the
energy per particle for this model, which is —e~/a where a is the hard-sphere
diameter.

~ The properties of a hard- sphere system are available in tabulations and
expressions that are of a relatively simple form and that for many purposes can be
considered exact. In particular, there are the results of Monte-Carlo and molecular-
dynamical studies, as well as the Padé approximants from density expansions. In
addition there are the somewhat less accurate but extremely convement Percus—
Yevick (PY) values for F and g(r).

1 Present address: Department of Chemistry, University of Maine, Orono, Maine 04473.
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In general analogous results for -] and ionic systems lack both the accuracy and
simplicity found in the hard-sphere case. However, over certain restricted ranges
of density and temperature, such systems can profitably serve as reference systems
for still more complicated systems. For an example we give here some numerical
estimates of an upper bound on the excess free energy per unit volume F ¢ for the
model of hard spheres interacting via a square-well plus coulombic potential. The
bound is in terms of the properties of charged hard spheres (the primitive model).
The equilibrium properties of the latter are available from the hypernetted chain
(HNC) equation which has been shown to be accurate for the range of p and ¢28/a
that corresponds to aqueous solutions of 1-1 electrolytes at 25°c at concentrations
up to 1:-0 M [2]. We compare the upper bound with an accurate estimate of the
exact result for the charged hard-sphere plus square-well model that has been
obtained directly from the solution of the HNC equation for this model.

For charged hard spheres, the first-order theory (in e28/a) of Stell and Lebowitz
[3] is found to yield an upper bound on F. In the L-J case however, the theory of

- Barker and Henderson [4] (BH) has a term of first order (in A, a strength parameter
defined below) that cannot be guaranteed to give an upper bound on F, because of
the way the repulsive core of the L-J potential is handled. It is possible that the
price we pay for a first-order theory in A that vields a rigorous bound is some loss of
numerical accuracy for certain ranges of p and T compared to first-order BH
results. 'We are unable to verify this by a direct thoroughgoing comparison with
BH however because in giving the results of  their approximate second-order
theory BH have not generally separated the second-order contributions in an explicit
way. Kozak and Rice [5] have already considered a general procedure for replacing
the L-J potential by the sum of a hard-spheré core plus L-] tail. They use a
variational scheme for choosing a sphere diameter a which is different from ours and

-which can in principle be applied to any approximation, FaPProx, that is expressible
in terms of a hard-sphere core and L-J tail, When it happens that fapprox js greater

* than the Lennard-Jones F for some a at a given p and B, their scheme picks out

the @ that minimizes | F— Fapprox| ; 3 drawback to their scheme is that it picks an

a associated with a local maximum (not minimum) of | #— Fapprox| if it so happens

that Fapprox < F over a range of @, Our scheme coincides with theirs when (and

- only when) FaPProx is chosen to be- the sum of zeroth and first-order terms in A

-Thus our result shows that through first order in ), their scheme will in fact

‘minimize |F— Fapprox|,

: In the treatment of Barker and Henderson, the definition of an effective hard-
sphere diameter is such that for any B the hard-sphere reference expression will
yield divergent results for p above a particular ‘ close-packing’ py. In our
approach, no such difficulty can arise, because of the nature of the density
dependence of our effective hard-sphere diameter. This makes it possible for us to

-contemplate using our first-order theory to describe the entire solid phase as well

 as the solid—fluid transition. (BH combine their perturbation thcory with a free-

- volume theory in order to treat the solid-fluid transition [4(M)].) Ilowever, we
have not attempted in this article to give numerical results for the p and B
characteristics of the solid phase.

2. ANALYTIC EXPRESSIONS
Let the pair potential v(r) of a onc-species system whose potential energy
consists of a sum of identical pair terms be written as 2(r) =v(r) + Ae(r), and let a
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superscript zero refer to quantities associated with the system in which v(r)=2(r).
Then our starting point can be written as the Gibbs-Bogoliubov inequality [6] on
F, the Helmholtz free energy per unit volume:

F<Fo41ap? f £(e)e(r) d. 2.1)

As one of us has pointed out elsewhere [7], if 20=vHS, where vH5=0c0 forr<aard
0 otherwise, with r=|r|, and if viJ=4¢[(o/r)!2—(o/r)%] then (2.1) still holds
despite the singular nature of =(r) for r <a. One way of seeing this is to introduce
 Av” =91J for 7> a and note that F for the potential 25+ Av™ is clearly less for any

given B and p than F for v1J. If (2.1) is then applied to the case of the potential
yHS 4 o> with w=1v", the final result in obvious notation is:

FLI < FHS L 1202 f gESy> dr. 2.2)

Inequality (2.2) holds for any a, so that we can choose a to minimize the right-hand
side of (2.2) if a minimum proves to exist. We consider this choice numerically

in §3. Al
In the ionic case it is necessary to think of a several-component system, in which
the pair potential between two particles of species 7 and j with charge number z;

and 2; respectively is given by: ,
vy = 'I)un + 2’{21(82/01‘), : (2 3 3)

“~where D is the dielectric constant of the solvent medium. It is conventional to

“ work with the excess free energy per unit volume, F € rather than F. It is also
convenient to begin with a fictitious damped potential:
' vyy=v;+ zizzel[exp (—ar)/Dr], «>0. T2
For v;j given by (2.4) the analogue of (2.1) is:
Fex<Fex044(eHD) 3 sy [ g exp (~enlrdr.  (2.5)
i3 ;

Each integral in (2.5) is finite only if > 0, which is why we have started with (2.4)
instead of (2.3). Assuming charge neutrality, so that :

g 2
Z 2i2Pip = (Z 3iPt) =0,
Ly

(2.5) can be written in terms of hy=gy—1:
Fexg Fex, 04 1(e2/D) Y =i25p1pg f hi0 exp (—ar)fr dr.. (2.6)
iJ

We can now take the limit as «—0. If one deals with ;% that have finite spatial
moments of all order, the widely accepted assumption that all the spatial moments
of hy0 are also finite implies that (2.6) remains useful as a—0 for such z,

yielding: .
Fexg Fex,04 1(8-"/0) z SiZ1pipy f flfju/r dr, 2z 7)
i)

The right-hand side of (2.7) is just the sum of the first two terms in the expansion
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of Stell and Lebowitz ([3], see their cquation (2.9)). If 940 is the same for all 7j
pairs (symmetrical system) then the second term in (2.7) is identically zero and we

. have:

Fexg Fex,0 (symmetrical system). (2.8)

For arbitrary v;; one can profitably introduce:
UinS(l') =0tk s aij
=0 otherwise

: .and

viy”(N=vy if r>ay
=0 otherwise. (21539)

One can show in analogy to (2.1) that
Fex<FoxsS 110 7 oy [ gigisoy> d. (2.10)
i

One can then seek the choice of a;; that will minimize the right-hand side of (2.10).

- If 40 is already just v;HS (primitive model of an ionic solution) then (2.7)
already gives an upper bound for F € in terms of hard-sphere quantities. We note
that the right-hand side of (2.7) is also a formally exact limiting law [3] for 8—0 and
fixed p;. For any model with a hard core potential this differs from the Debye—
Hiickel expression, which becomes exact in the limit of fixed Bas p;—0. Also
because (2.7) is a bound, unlike the Debye-Hiickel limiting law, the limiting law as
B—0at fixed p; must always be approached from lower values of F €% and can never

- be crossed at any temperature. For the primitive model (2.7) provides an upper

bound on Fex, which compliments the lower bound on Fex that follows from
Onsager’s lower bound on the energy per particle of a system of charged hard
spheres. Onsager’s bound is —e2/a for the simplest case a;=a, which yields
immediately the bound Fex> Fex.0_¢2/q for that case. Our upper bound on F ex
is illustrated in figure 1. The Percus-Yevick (PY) equation for mixtures of hard-

- spheres was used to compute the zeroth- and first-order termsin (2. 7)[8]. Forthe

zeroth-order term, the PY compressibility equation was used:

-+ gt~ )+ 72, 2.11)

where

P= ) pi f1=gZPiai,
(2.12)

§z=%r 2 piaid, §a=% 2 pia®

and 4, is the hard-sphere diameter of species 7. To evaluate the term to O(e2/D),
analytic expressions obtained by Friedman [9] for [/;%/r dr in the PY theoryv for
mixtures of hard spheres were used. The contributions of the term to O(e3/D) in
(2.7) are also shown separately in figure 2.
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Figure 1. Upper bounds on Fex{pkT for systems of charged hard spheres. The charges,
radii (Pauling) and other parameters (D = 78-358, T'=298-16) correspond to primitive
model representations of aqueous solutions of LaCls, CaClz, ZnSO4 and CsI at 25°c.

3. NUMERICAL RESULTS

In this section we present numerical results for the upper bounds on the free .
energies of Lennard-Jones systems and the free energies of coulomb systems in
terms of the properties of hard spheres. For the coulomb system the unperturbed

system consists of charged hard spheres.

3.1. Upper bounds for Lennard-Jones systems
We choose for the reference and perturbing potentials the vHS and Mw(r)
discussed immediately below equation (2.1) so that

Aw(r)=vW(r) - vH5(r)= — 00, r<co

@) e e

where o and ¢ are parameters in the Lennard-Jones potential and the hard-sphere
diameter of the reference (unperturbed) system has been written as co. For any
given p and T we obtain a least upper bound on the frce energy by minimizing the
right-hand side of the inequality with respect to c.  We denote this optimum value
of ¢ by co, which in genecral is a function of temperaturc 7 and density p.
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Figure 2. The contributions of the first-order term in (2-7) to the upper bound on
Fex[pkT for the same systems illustrated in figure 1. The lower part of the figure is
an expanded version of the upper part for three electrolytes at lower concentrations.

It is convenient to use the dimensionless variables p*=pad, d*=c3p* T*=kT/c
and y=r/ca. For the perturbation expressed by (3.1) we can write the inequality
(2.2) in the form: ;

< e %, T), (3.2)
where
e o, )= @)+ S [1eny+ (- 1) ] 6.9)
and
In(c®p*) = f : ( == :t) 8%y, Pp*)y2 dy, (3.4
O \Y e ),
In(ept)= [ 80, Sy . )

The superscript zero refers to properties of the hard-sphere system.
For the radial distribution functions g9(y, c3p*) of hard spheres we usc the
results from the Percus—Yevick equation which have been tabulated by Throop and
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Bearman [10]. More explicitly, we use the least-squares fit for J4 and Ig to a
power series in d* (=c3p¥) that Kozak and Rice [4] have obtained from these tables.
. Their equations for I and I are: :

Io(d*)= —0-9021 —0-3321d* — 0-2052d*2 + 0-35584*3, (3.6)
Ip(d*)=0-4353 +0-5540d* — 0-0273d*2 + 0-4187d*3. ST
For the excess free energy of the hard spheres we have investigated three separate
approximations. :
(1) The Percus—Yevick compressibility equation [11, 12]:
Fex0 .- '3 3

- __z+m—ln(l-—wd*/6). (3.8)

(2) The Padé approximant of Hoover and Ree [13] which in our notation reads:

Fex.0 « [1—0-231958144* + 0-020582814*2]
pkT e [1—-0-886456574* + 0-181200224*2]° )

(3) The expression for F ex.0 which corresponds to a p expansion for P/pkT
obtained by Levesque and Verlet [14] from the first seven virial coefficients and the
Monte-Carlo results at high density. In our notation their equation is equivalent
to

Iiz‘_i’r_“ =2.09439d% + 1-37078d*2 4+ 0-8787414%3 + 0- 530584*4
p ‘
1+ 0-311114%5 + 0-194124%6 +-0-200554%8 1 0-035504*13, (3.10)

These approximatidns are compared in table 1 up to reduced densities of 1-2. At
the highest densities (3.9) and (3.10) are of comparable accuracy while at reduced

Fex.0/okT > ]

d‘

PY+ SIPPG Padé§

virial -

0-1 0-2241 0-2241 0-2241
0-2 0-4820 0-4817 0-4817
0-3 0-7820 0-7806 0-7806
0-4 1-135 1-131 1-131
0-5 1-556 1-546 1545
06 2-066 2-045 2045
0-7 2-694 2-653 2-65+
0-8 3-485 3.408 3.408
0-9 4-502 4366 4364
1-0 - 5.851 5-616 5-604
1-1 7-777 7-306 7-263
1.2 1-035 0-9702 0-9576

+ Percus-Yevick compressibility equation.
I Levesque and Verlet [14].
§ Hoover and Ree [13].

Table 1. Comparison of several approximate expressions for the excess free energy
per unit volume, '
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densities below 0-2 all three equations are accurate to three significant figures. We
use the Padé approximant in all our numerical computations except as noted below.

In the Barker and Henderson perturbation scheme the diameter of their hard-
sphere reference potential is a function only of temperature. In our procedure, the
diameter cgo is a function of density and temperature except of course in the limit of
zero density when ¢q is a function of temperature alone. Moreover, the Barker and
Henderson perturbing potential is different from ours since their Aw(r) is given by
vLI(r) for r> o and is 0 otherwise. Despite these fundamental differences in the
two schemes, the diameters of the effective hard-sphere cores behave quite similarly
at small p*. To see this we first obtain the functional dependence of cg on T* as
p*—0 and compare our values for the hard-sphere diameter with Barker and
Henderson'’s choice.

As p* -0 we see from (3.4) and (3.8) that J5(d*)—> —§ and Ip(d*)—3 which
agrees to within 0-014 of the zero density limit implied in the least-squares fit of
Kozak and Rice. Using the PY equation to obtain the hard-sphere contributions
to O(d*) in F e*[pkT, we have for small p*:

e ey
¢(CSP 1T )_) 3 +T*C6 9+9C6 3 (3‘11)

On minimizing ¢ with respect to ¢, a quadratic expression in ¢8 is obtained:
T*c12 4 4¢6—4=0, (3.12)
which has only one positive root given by:- ..

2
cofmrs [= 1+ (1 + T4)2), (3.13)

As T*—0, co—1 which corresponds to a hard-sphere diameter of o. In figure 3 the
low density limit of coo is compared with the hard-sphere diameters that are
appropriate to the perturbation scheme of Barker and Henderson. For small p*
the upper bound on the free energy follows from (3.11) on substituting cp for c.

hard-sphere
diometer
oL al
08
cs (f*—ml
i1 11 L I T O e [ N [ L 1 [ L B LT e
I 2 S 10 ™ 50 100

Figure 3. Comparison of the hard-sphere diameter (in units of o) as a function of T* in the

Barker and Henderson [4] perturbation theory with ¢o of the present theory in the
limit of low density.
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Throughout the whole range of densities that correspond to a stable fluid, a
good estimate of our upper bound on the free energy can be obtained directly from
the extremum value (or values) of the function ¢ given by (3.3). Numerical
analysis showed only one minimum for  as a function of ¢, in contrast to two
minima for the total free energy as a function of the hard-sphere diameter which
Kozak and Rice obtained from their variational procedure. Our numerical
estimates of the upper bounds for the free energy are compared in figure 4 with

pex T T T T | ]
P kT = Monie Carlo 2:74

— Upper bound
2-0
0-0
-2-0
-4-0

x
1 | | I | |
0 -4 -8 g a2

Figure 4. Comparison of the upper bounds for Lennard-Jones systems at T*=2-74, 135,
: 1-15 and 0-75 with the Monte-Carlo results of Hansen and Verlet [15].

recent Monte-Carlo results of Levesque, Hansen and Verlet [14, 15] for the
Lennard-Jones potential. We note in passing that the bounds obtained for the free
energies of Lennard-Jones molecules also apply to the same molecules with point
dipoles embedded at their centres since the term of O(1/T) from the dipole
contribution to F/pkT is identically zero. To enable comparison of our bounds
with the first-order terms in the perturbation theory of Barker and Henderson and
others as they become available, the results for 7*=0-75, 1-35, 1-15 and 2-74 are
also presented in table 2. For a given T*, the p* dependence of ¢y is also given in
the same table, and it is seen that ¢y is relatively insensitive to charges in- p*
compared to changes in T*. In figure 5 we illustrate the sensitivity of F/pkT to the
choice of ca. It is evident that when ca is within 0-01 of its optimum value ¢go, the
error in F/pkT is small in comparison with the difference between the exact
-Monte-Carlo results and our bounds at the temperatures and densities that we

consider.

3.2. Upper bounds for coulomb systems
We have already noted that (2.7) provides a bound for coulomb systems in terms
of the properties of an uncharged reference system. Here we shall consider instead
the use of charged hard spheres to provide a bound for a charged system in which
k]

M.P.
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F ik Percentage F b Percentage
» Al rik s 2
P =0 pkT (ﬁg) difference £L pkT (K";?g) difference
T*=0-75 ik =5
0-1[0-980 | —3-869 | —4-11 5-8 0-965 | —3-526 | —3-597 2:0
0-2|0-988 | —3-764 | —4-09 8-1 0-970 | —3-052 | -3-171 4-0
0-310-993 | —3-965 | —4-31 8-1 0-974 | —2-856 | —2-999 4-7
0:4]|0-999 | —4-287 | —4-60 6-7 0-976 | —2-756 { —2-914| . 5-5
0:5]1-002 | —4-650 | —4-92 5-5 0-977 | —2-681 | —2-852 6-0
0-6|1-004 | —4-988 | —5-24 4-8 0-977 | —2-579 | —2-769 6-9
0-711-003 | —5-232 | —5-53 5-4 0-975 | —2-402 | —2-645 9:2
0-8|1-000 | —5-300 | —5-69 6-8 0-971 | -2-102 | —2-413 12-9
0-9|0-996 | —5-099 — — 0-967 | —1-620 — —_—
1-0 {0-989 | —4-:520 —_ — 0:961 | —0-8946 — -
TE—1e115 T*=2-74
0-1/0-969 | —3-600 | —3-69 2-4 0-939 | —3-316
0-:210-975 | —3-205 | —3-34 3-9 0-942 | —2:619
0-3({0-980 | —3-094 | —3-25 4-9 0-943 | —2-188
0-4(0-983 | —3-084 | —3-25 5-2 0-944 | —1-844
0-5)0-984 | —3-100 | —3-28 053 0-944 | —1-524
0-6 {0-984 | —3-088 | —3-29 6-1 0-942 | —1-189
0-7/0-983 | —2-997 — — 0-939 | —0-8053
0-8 | 0-980 | —2-768 — — 0-935 | —0-3441
0-90-975 | —2-337 — —_— 0-931 0-2262
1-:010-969 | —1-632 B — 0-922 0-9426

Table 2. Comparison of upper bounds for the free energy with Monte-Carlo results.

the perturbing potential is a square well defined by:

/\wij = 0, o r<aiy -
= dij, aig<r< bij
=0, by<r. (3.14)

Here dy is positive for a mound and negative for a well. An'upper bound for the
excess free energy per unit volume is given by the multicomponent analogue of
(2.1), which for this system can be written:

ex ex,0 ¢ : biy
and the superscript zero in (3.15) refers to propertics of the primitive modecl
(charged hard-spheres). Accurate HNC computations for this model and for the
square-well model are available, To estimate the upper bounds for Fo¥ we make
use of published results [2] as well as some additional computations done at high
concentrations especially for this study. Our bounds are compared with the
“ exact " HNC results for the square-well model in table 3. It is obvious that the
above scheme can be applied to other short-range potentials as well, and that the
bounds for Fex also provide the zeroth and first-order terms in a perturbation
theory which uses the primitive model as the reference system. In particular,
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T T T T
Fex T- 274

PKkT Co= +942
0

-5
-I'.O..
15
}-004
1 1 1 i
-9 : 1-0 c

Figure 5. Fex/pkT as a function of ¢ for a Lennard-Jones system at p* =06 and T*=2-74,
1-35, 1-15 and 0°75. The minimum gives the least upper bound on Fe*/pkT and the
optimum value of c¢=co. The arrows point to the hard sphere diameters (in units of
a) in Barker and Henderson’s theory. They are 0-934, 0-967, 0-971 and 0-978 at
T*=2-74,1-35, 115 and 0'75, respectively. The horizontal lines represent the exact
Monte-Carlo results of Levesque, Hansen and Verlet at T*=1-35, 1-15 and 0-75,
respectivelv. The ordinate scale for T*=2-74 has been lowered by 0-3. For T*=133,
1-15 and 0-75 it has been raised by 05, 0'5 and 1-9 respectively.

Conc. i
(moles/litre)
Percentage
Upper bound HNC difference
o ~0-190 ~0:192 1
0-4 —0-296 —0-301 1-6
0-7 ~0-336 —0-343 o
1-0 —0-353 ~0-362 &
1:2 —0-359 —0-368 2
e Hgass ~0-370 3-2
2.0 —0-351 ~0-363 3-3

The concentration is the stoichiometric molarity of the clectrolyte. The model
parameters are those necessary to obtain rough agreement with experiment for NaCl in
H20 at 25°c (Rasaiah and Friedman, 1968, 7. phvs. Chem., 72, 3352).

Table 3. Upper bounds for the excess free energy in the charged square-well maodel for the
parametersa, , =190,a,_=2-76,a__=3-62,b,_—a,_ =276, d,._=025kT.d. . =d__=0.
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effects due to changes in dielectric constant with distance between two ions, and
other peculiarities of the short-range potential, could be investigated by this
perturbation scheme.

We are grateful to J. P. Hansen and L. Verlet for sending us a preprint in which
Monte-Carlo results for a Lennard-Jones potential are given. We are indebted to
H. L. Friedman for providing us with his analytical expressions for integrals
involving the Percus-Yevick distribution functions. Facilities at the Computing
Centre of this University, and the assistance of Mr. Dominic Seraphin are gratefully
acknowledged.
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