Molecular dynamics study of a dipolar fluid between charged plates
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Recent experiments and computer simulations of thin films have observed the segregation of
nonpolar molecules into layers or sheets parallel to the confining walls. We discuss a molecular
dynamics study of a thin film of Stockmayer molecules between Lennard-Jones plates and find
that, in the absence of an electric field, the dipoles are mainly oriented parallel to the plates in
each layer. The component of the dipole autocorrelation function in this plane decays to zero
more slowly than the component perpendicular to the walls. The polarization density profile,
with an electric field perpendicular to the plates, is also studied, and is found to oscillate from
layer to layer, with a magnitude that is in excess of what is predicted by the Debye theory of
dielectric saturation by a factor nearly equal to the ratio of the local density to the average bulk

density.

I. INTRODUCTION

In an elegant experiment Horn and Israelachvili' mea-
sured the force between two molecularly smooth surfaces
separated by a thin film of organic liquid and found it to
exhibit spatial oscillations with a periodicity equal to the
molecular size. Computer simulations of Lennard-Jones
particles between two walls by Snook and van Megan® and
by Magda et al.? have confirmed the presence of these oscil-
lations and traced them to the formation of layers of mole-
cules parallel to the walls. The distance between these layers
is equal to the diameter of the molecules, confirming the
importance of the repulsive forces between the particles in
the fluid and between the particles and walls in inducing
layering in a thin film trapped between two flat plates. The
molecular dynamics simulations of Magda ez al.? have also
shown that the diffusive motion perpendicular to the walls is
more strongly affected by confinement than the motion par-
allel to these surfaces. More recently, high density films of
water between walls have been studied by computer simula-
tion.* Lee et al.*® used the ST2 potential*® for water in
their molecular dynamics study of a film of thickness 20 Aat
290 K between two model “hydrophobic” walls, and found
density oscillations extending far into the fluid, with the
molecules near the surface avoiding orientations that could
lead to surface polarization. Christou ez al.>®® studied a film
of thickness 23 A between hard walls at 298 and 363 K by
Monte Carlo simulation using the Rowlinson potential >®
for the interaction between water molecules. The central sec-
tion of the film, where the majority of molecules reside, was
found to be more nearly like the bulk properties of water
according to this model, leaving a rarefied region close to the
walls and an oscillating density profile between the center
and the edges of the film.

Several theoretical treatments predicting oscillations in
the density and polarization density profiles of simpler mod-
el systems have appeared®'® over the past few years and it
has been claimed'® that, in the absence of an electric field,
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orientations parallel to the wall are favored by the molecules
close to it. Our MD simulations for thin films confirm this
prediction for a Stockmayer fluid and provide new informa-
tion on the dynamics of dipoles in each layer of the film
confined between two walls. A detailed study of the polariza-
tion density profiles in the presence of an electric field is also
made.

Il. SIMULATION OF THE STOCKMAYER FLUID
BETWEEN TWO WALLS

The potential for the Stockmayer fluid'! is given by
U (rp,p;) =4€[(o/r) — (0/r)°] — wiTop,;
LJ potential DD potential’
(2.1)

where r is the vector joining particles i and j, p; is the dipole
moment vector of particle i, » = |r|, and € and o are the
Lennard-Jones parameters. The dipole interaction tensor

T= 3/ — U)/P, (2.2)

where U is the unit matrix. We use the method of constraints
introduced by Ryckaert et al.'? and adapted by Pollock and
Alder™ to Stockmayer fluids to treat the rotational part of
the motion. The Lagrangian for particles of mass m and mo-
ment of inertia I with dipole moments y interacting accord-
ing the Stockmayer potential is

L=Z—;-mv?+(1/#2)§%I;lf+—21—22pi-T-pj

i#j

~S I Su S AW - + S E 23
i#j j i i

The first two terms are the translational and rotational kinet-
ic energies, respectively, and the third and fourth terms rep-
resent the dipole~dipole and Lennard-Jones interaction en-
ergies. The fifth term enables the components of @ to be
treated as independent variables in Cartesian rather than
spherical polar coordinates, and thus a constraint term must
be introduced with Lagrange multipliers determined such
thatu? = |, |?at all times.'* The last term in the Lagrangian
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allows for the presence of an external field. The dipole—di-
pole potential energy, force, and torque on particle / may be
written as

Ubp,: = [ (I ’I»l'j)/’s—3(l"ll,-)(l"u-j)/fs],

Foo, = =V, Upo, = 3 [V, T ]
Jj#i

(2.4a)

=E{3[r(|»|r, 'll:j) +ll,-(l"|1:j) +M,(l"ll,)]/75

Fry
—15r(r e p,) (rep;)/r'}, (2.4b)
Tpp; = —V,,Upp,; = z [Ten]
f=
=Y [3r(r-w)/P —w/r]. (2.4¢)

i#

Following earlier workers,”*> we consider the interaction
between the fluid particles and a Lennard-Jones-type FCC
solid, with the (100) planes parallel to the liquid—solid inter-
face, by putting two flat semi-infinite solids at points + o
and — o distant from the x—y planes of the rectangular box
on the z axis. If the solid atoms are treated as being uniformly
distributed across each plane, then the potential between the
uppermost plane and a particle at a distance z away is ob-
tained by integrating over the infinite LJ wall'***

u, (z) =2me[0.4(0/2)"° — (0/2)*]. (2.5)

The interaction of the entire infinite series of structureless
planes with a given particle is described> by

u, (z) = 2me[0.4(a/2)"° — (0/2)*

— (V2/3)(2/0 + 0.61/2) 3] (2.6)
and the particle-wall force is derived:
F, (z) = 8wez[(0/2)° — (0/2)*

— (V2z/40) (z/0 + 0.61/42) ~*] /2. (2.7)

Since there are two such walls, the LY wall-dipole interac-
tion for particle i is given by

U,:(z))=u,(z; —z;) +u,(z; — z,), (2.8a)

F,:(z)) =F,(z; —2,) + F,(z; — 2), (2.8b)
where z, and z, are the locations of two walls.

The equation of motion for the translational degrees of
freedom, derived from Eq. (2.3), is

mf; =p’i'ZVT.|‘l'j +|»"i'VE+F}Jr
JFE
in which the last term represents the short range LJ force.
For the rotational degrees of freedom, the equation of mo-
tion

2.9)

(I/y.z);'i.,» = 2 T W+ E +24;p;

F=3
also obtained from Eq. (2.3), involves the constraint 4,.
These equations are integrated using the leapfrog algo-
rithm.'® The equation for !+ ' at time step (n + 1) At in-

volves solving a quadratic equation for A, found by demand-
ing 4 = [uy *'|? which leads to

(2.10)

2 12
— e+ (e} —cpe)
A= ,
C2

(2.11)

in which
e, = uY/D [+ ni -~V + A (w] RN/, (2.12)

ez = /D, (2.13)
cy= “'Li"" 1/2|2 + (#2/1)2|R:t|2 -+ 2"’? . p'in— 1/2
+ (Qu¥/D (7 R} + "~ 7+ RD), (2.14)

where R} is the sum of the first two terms on the right-hand
side of Eq. (2.10) and .} the dipole moment vector of the ith
species in the nth step and ;" ~'/? is the time derivative of
this vector halfway between the n-1th step and the nth step.

The simulation was carried out in a rectangular box of
dimensions 7 X 7 X ho* where A is the distance between the
walls, set equal to 7.50, for the calculations reported here.
The number of particles N = 206, the mass m of each parti-
cle was 6.63X 1072 g and the reduced temperature 7*
(= kT /e) and reduced density p* =po3 were 1.18 and
0.5605, respectively. The moment of inertia was assumed to
be 0.025 m o7 and the time step Az of 5 fs was used for the
rotational and translational motions. Periodic boundary
conditions were applied in the x and y directions parallel to
the walls using the minimum image convention. Also, to
take account of the long-range dipole—dipole interaction in
the system, we performed Ewald summations in the x—y
plane.'”-1°

Computations were first carried out for LJ particles
between two LJ walls by setting the dipole moments equal to
zero and suppressing the rotational part of the algorithm.
Averages were computed over intervals of 10 000 time steps,

2.0

1.0

E

|

FIG. 1. The density and polarization density profiles for a Stockmayer fluid
atan external field of £ = 0.0,0.5, 1.5,2.5X 10° V. m ™! perpendicular to the
wall. The lower curves for nonzero fields are the polarization densities di-
vided by the dipole moment P,(z,E)/u. The reduced temperature
T*=1.18.
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FIG. 2. The polarization densities P, (z,E) for different layers in the liquid
film. The lowest curve is the average over the middle three peaks of Fig. 1.
The circles, crosses, and diamonds are the corresponding results predicted
by Eq. (3.3) using the density profiles p(z) obtained from computer simula-
tion.

after initial equilibration over 10 000 time steps, and the re-
sults found to be in excellent agreement with the Monte
Carlo calculations of Snook and van Megan® and with the
molecular dynamics simulations of Magda et al.> The point
dipoles with a dipole moment 1z = 1.36 D were then embed-
ded at random in the LJ particles in such a way that the total
dipole moment and the total angular momentum of the sys-
tem was zero. Again, after equilibration, averages were cal-
culated over period of 10 000 time steps. We next added an
electric field of the order of 10° V/m which corresponds to a
surface charge density of one electronic charge /1000 A2,
The interaction between the external electric field E and the
dipole moment of each particle has no effect on the transla-
tional motion but modifies the rotational motion and orien-
tation of the dipoles. Averages were computed after equili-
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FIG. 3. The average of the component of the dipole moment in the z direc-
tion divided by the dipole moment {, (z,E) ) /u for the different layers next
to the wall as a function of the external field E. The smooth curve is the
Langevin function which is the Debye equation for (u, (z,E))/u.

bration over intervals of 10000 time steps. The density
profiles were determined from a histogram of the z coordi-
nates of the particles from one wall, i.e.,

(p(ZE)) = (N,(z,4z;1))/AAz, (2.15)

where N, (2,Az) is the number of particles whose centers lie
in a slab of area 4 and thickness Az with the midpoint of the
slab at a distance z from the left wall and (---) denotes the
time average defined as the sum of N, (z,Az) over successive
time steps divided by their number. Likewise the polariza-
tion density is the time average of the dipole moment per unit
volume in each slab which can be resolved into its compo-
nents, for example,

TABLE I. Molecular dynamics results at the first and second peaks of the local density for a dipolar fluid between charged Lennard-Jones plates.

E (1. (2)) (P,(2)) (p(2))X{ u,(2))

(1°Vm™) {p(2)) u o U
First layers 2.6 0.0 0.0 0.0
0.0 Second layers 1.1 0.0 0.0 0.0

25 027 0.64 0.68

0.5 1.1 0.38 0.46 0.42
24 0.50 1.1 12

Lo 1.1 0.65 0.80 0.72
2.0 0.70 1.4 1.4

L5 11 0.73 0.91 0.80
1.9 0.79 1.6 Ls

20 12 0.77 1.0 0.92
1.9 0.83 1.6 1.6

25 1.2 0.80 11 0.93
1.9 0.87 1.6 1.6

30 1.2 0.80 1.0 0.96
1.8 0.87 1.6 1.6
35 12 0.83 1.1 1.0
1.8 0.89 17 1.6
4.0 12 0.84 1.1 1.0
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FIG. 4. The magnitudes of the components of the dipole moment parallel to
and perpendicular to the wall as a function of time in the first two layers
(labeled 1 and 2, respectively) as measured by {(u,? +4,%)"/?)/u and

{TRM/R

N(1)

(P,(zE)) = < > M (z,AZ;t)>/AAz,

i=1

(2.16)

where the sum is taken over the number of particles
N, (z,Az;t) at each time step in the slab. The components of
the average dipole moment per particle in each slab are de-
fined similarly, e.g.,

N
(p.(zE)) = < > M (Z,AZ;t)/Ns(t)> . (2.17)

i=1
The width of the slits Az used was 0.10. Averages of |1, | and
of (u, > + u,?)"/? are also evaluated through analogous defi-
nitions. At high fields, when all the dipoles are aligned with
the field (saturation) we naturally expect

(P,(z.E)) =pu{p(z,E)). (2.18)

lIl. RESULTS AND DISCUSSION

In Fig. 1 we have plotted the density and polarization
density profiles for external electric fields E ranging from
zero to 4.0 10° V. m~!. The density profile for the Stock-
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mayer fluid in the absence of an electric field is essentially the
same as that for the corresponding LJ system with some mild
enhancement of the oscillations towards the center of the
film and a slight decrease in the singlet density at the first
peak near the wall. A marked change in these profiles occurs
when the electric field is turned on, causing a further de-
crease in the local density near the wall and pronounced
oscillations in this function across the film. Apparently the
alignment of dipoles in the direction of the field increases the
attractive interaction between them, causing them to retreat
from the walls. As the field is increased the polarization den-
sity, which oscillates in phase with the local density, satu-
rates to a limit given by Eq. (2.18). Figure 2 shows how the
polarization density in each layer changes with the external
field; the lowest simulation curve is the average over the
middle three peaks. In Fig. 3 we have the corresponding
curves for (i, (z,E)) as a function of the external field E.
The Debye theory for ideal dipoles® in an electric field
ignores the interaction between the dipoles and considers
only their interaction with the external field, predicting

(1, (2,E)) =uL(y), (3.1)

where L(y) is the Langevin function and y = (¢|E|)/kT.
There is of course no distinction between the different layers
in this theory for ( u, ); it was not constructed to handle thin
films or the effects of the internal field created by the di-
poles®! in these films. Figure 3 shows that the theory predicts
too small a value for ( , ) for all except the first layer at low
fields. The overall agreement is however quite good. The
polarization density profile is, by definition, the ensemble or
time average,

(P,(zE)) = (p(zE)u,(z2,E)) (3.2)

and Eq. (2.18) follows from Eq. (3.2) at high fields (satura-
tion). A theory at the level of simplicity introduced by De-
bye for (i, (z)) can be constructed for (P, (z,E)) by assum-
ing that { p(2)u, (z,E)) = (p(2)){ 1, (z,E)), from which
it seems that

(P,(zE)) = (p(2))uL(y) (3.3)

if Eq. (3.1) is assumed for ( &, (z,E)). The first assumption
is independent of the second and can be tested directly by
simulation. Table I shows that its accuracy increases with

FIG. 5. Snapshots of the positions and orienta-
tions of dipoles in the first layer at intervals of 100
time steps. The length of the arrow in each circle
is proportional to the component of the dipole
moment parallel to the wall.

t=100
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FIG. 6. (a) The dipole autocorrela-
tion function (p(z) « u(0))/u* and
its transverse (e (D, (0)
+ 2, (D, (0))/* and longitudi-
nal {p,(t)u,(0))/u® components
for all of the particles in the liquid
film. (b) The averages of the trans-
verse and longitudinal components
of the dipole autocorrelation func-
tion for particles under the peaks
nearest to (1) and next nearest to

CUxIDEX(0)+ 1y () ty(0))/ 112

{uz(thp z("))/l‘z

Caltz(0)y/ a2 (2) the confining walls.

the field when the fluctuations in the number of particles in
each layer are small. This could be used as the basis for a
more elaborate theory of the polarization density profiles of
thin films, particularly at high fields. Equation (3.3), which
employs the additional assumptions implicit in the Debye
theory?®?! for { u, (z)), distinguishes the polarization den-
sity profiles of the different layers as primarily due to varia-
tions in the corresponding density profiles. In Fig. 2 we com-
pare this equation with our computer simulations and find
that although it predicts saturation plausibly at high exter-
nal fields, it gives polarization densities that are slightly large
in the first layer, at low fields, and correspondingly small in
the second and middle layers in order to conserve the total
number of particles in the film. A different approximation
which sets ( p(z)) equal to the bulk or average density, is
applicable only to the bulk fluid (i.e., z— o ).*"** Its useful-
ness is limited for thin films (see Fig. 2) since it ignores the
oscillations in the local density that are characteristic of
these films or of fluids close to a wall.>® The polarization
densities obtained from our simulations are greater than the
predictions of this last approximation by a factor nearly
equal to the ratio of the local density to the average bulk
density (see Fig. 2).

We next consider the properties of the film in the ab-
sence of a field between the plates. An examination of the
average values of {(u,? +p,%)"/?)/p and {|u,|)/u shown
in Fig. 4 for each of the first two peaks in the density profile
immediately suggests that the dipoles are mainly oriented
parallel to the wall with a probability that decreases slowly
with the distance from the wall. In Fig. 5 snapshots of the
particles in slits of width 0.30 centered at the first peak near
the left wall are shown at two different times separated by
100 time steps. The magnitude and length of the arrow
drawn in each circle of radius g/2 is proportional to the
component of the dipole moment in the plane (x-y) parallel
to the wall. These figures suggest that the dipoles in each
layer have a tendency to form chains which correspond to
configurations of low energy if the molecules are confined to
layers and the net dipole moment of each layer is, on the
average, zero. The rotational relaxation of the dipoles collec-

t(ps)

tively and in each layer is of special interest. In Fig. 6(a) we
plot the total orientation correlation function (u(¢) « p(0))
for all the particles as well as the components
(o (e, (0) + g2, ()12, (0) ) and (g, (£)p, (0)) which are
parallel and perpendicular to the walls, respectively. We find
that the component of the correlation function parallel to the
walls has a longer relaxation time than the component that is
perpendicular to the walls. Figure 6(b) shows these same
components for the particles under the peaks closest to the
walls. Figure 7, which is again an average over all the parti-
cles, confirms that the time in which the transverse compo-
nent of the dipole~dipole correlation function decays to zero
is about 5000 time steps or 2.5 X 10~ "' s whereas the longitu-
dinal component vanishes after about 1000 time steps. Our
simulations suggest that experiments to determine the relax-
ation times of dipoles in thin films between plates may be of
great interest. Calculations of the solvation force and other

1.0

0.81

0.6
¢ fig0)y/ 12
0.41
(xOL(0)+ Ly (D i1y (0))/ 142

0.2
0.0. g‘

T<uz(tnuz(o)>/u’
-0.2
0 5 10 15 20 25
t(ps)

FIG. 7. The total dipole autocorrelation functions and its two components
[see caption of Fig. 6(a)] over relatively long times (5000 time
steps = 2.5X 107" s).
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properties as a function of the electric field for different plate
separations will be reported in a forthcoming paper.
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