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The sticky electrolyte mode for a weak unsymmetrical electrolyte is solved in the mean 
spherical approximation (MSA) when there are adhesive interactions between oppositely 
charged ions. The distribution functions at contact and the thermodynamic properties in this 
approximation are derived; the solutions reduce to those of corresponding symmetrical 
adhesive electrolyte studied by Rasaiah and Lee [J. Chem. Phys. 83, 6396 (1985)] when the 
sizes of the ions and the magnitudes of the charges are made the same and to those of 
adhesive nonelectrolytes when the charges are removed. When the stickiness is turned off the 
solutions of the primitive model electrolyte in the MSA are recovered. 

1. INTRODlkTlON 

The sticky electrolyte model (SEM) has been studied 
by us in a series of papers.ld In this model for weak elec- 
trolytes, ion association is mtroduced in the Hamiltonian 
through a delta function interaction between oppositely 
charged ions at a L distance which is less than the sum of 
the radii of the ions. All of our studies so far have been 
confined to symmetrical electrolytes in which the ions have 
the same charge magnitudes and their sizes are the same. 
The Omstein-Zernike equations were solved analytically 
in the mean spherical approximation (MSA) and numer- 
ically in the hypemetted ch.ain (HNC) approximation for 
different values of L. The solvent effect in this model has 
also been investigated ‘@)J(~) when it was found that a hard 
sphere solvent has a strong packing effect on association 
while a dipolar solvent has ‘both a packing effect due to the 
hard cores and a screening effect attributed to the dipoles. 
When L < o/2, where (+ is the hard core diameter, the 
hard core repulsion between ions of the same sign ensures 
that polymerization is sterieally inhibited so that the only 
associated species present are expected to be dimers. By 
adjusting the coefficient of ,the delta function interaction it 
is possible to ensure that all. of the ions are paired> then the 
theory already developed for weak electrolytes can be ap- 
plied to these dimers, which are extended dipoles, as well. 
In particular the analytic solutions for the energy of these 
dipolar fluids in the mean spherical approximation have 
obtained for L = u/n with n = 2,3,4 and 5. 

In this paper we begin the study of sticky electrolytes 
in which the sizes of the associating ions may be different 
and the magnitudes of the charges on them are not neces- 
sarily the same. This is a more realistic model for weak 
electrolytes but the mathematical development is more 
complicated than it is for symmetrical sticky electrolytes. 
We begin our discussion in general terms with the bonding 
distance L < Ri + Ri, where Ri and Ri are ionic radii, but 
our detailed analysis is confined only to adhesion between 
oppositely charged ions. This is similar to the model first 
introduced by Baxter7(‘) and studied by Barboy and 
Tenne7(b) for a mixture of adhesive hard spheres of un- 
equal size; the difference lies in the presence of charges on 
the spheres and the allowance for adhesion only between 
unlike ions. The special case of adhesion between oppo- 

sitely charged ions of the same size has already been stud- 
ied by us4?’ in the MSA and the results for the more general 
case presented here reduce to those found earlier in the 
limit of equal ion sizes. The extension of our studies to 
mixtures of charged ions, aside from its immediate rele- 
vance to the aggregation of charged particles and colloids, 
also provides the means to investigate the properties of the 
double layer at charged surfaces when preferential adsorp- 
tion or adhesion of one or more ions plays an important 
role.’ This may be realized by taking the “wall limit” of 
our model in which the density of one species (the aspiring 
electrode or charged surface) is allowed to tend to zero 
while its radius becomes infinitely large. 

Our system consists of at least two kinds of ions of 
opposite charge; ion i has density pi, diameter oi and 
charge z,e, where xi is the valence and e is the magnitude of 
the electronic charge. Throughout this paper, we also use 
subscripts 1 or 2 to denote the two species of a single 
electrolyte. Electroneutrality implies that 

BipiTi=O. (1.1) 
In the SEM, the interaction energy between i andj is given 
as the sum of two terms: 

q(r) =2&(r) + z&(r), 

with 

(1.2a) 

I&) = co, r<q, (1.2b) 

= - zgf2/Er, o-q, (1.2c) 

u;(r)= -.e2(1--Sij), L+6<r<L-8. (1.2d) 

In Eq. ( 1.2a), u;(r) is the pair potential of the reference 
system in which there is no adhesion or “chemical bond- 
ing” and E is the dielectric constant of the solvent medium. 
The second term z&(r) introduces bonding (or adhesion) 
between ions with binding energy - e2 at a distance L 
< aVwhere a0 = (oi + oj)/2 is the contact distance between 
two ion centers. The Kronecker delta S, in this expression 
allows bonding to occur only between oppositely charged 
ions. 

The Mayer f-function for the interactions between the 
ions is given by 
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fii(r)= - l+cL(l -?$)S(r-L)/12, O<r<aij, 
( L3a) 

=exp( -Pzgzf2/er) - 1, r>oii (1.3b) 
where 5‘ is the sticking coefficient which is the inverse of the 
parameter r introduced by Baxter7(‘) in his study of the 
adhesive hard spheres, fi = l/kBT, kB is Boltzman con- 
stant and Tis the absolute temperature. Combining (1.3a) 
and (1.2d), we have 

suitable for adhesive interactions between the associating 
species, doubts have arisen about whether they are directly 
applicable to the cavity functions of the associating ions in 
weak acids and other dimerization reactions where poly- 
merization is precluded by steric or directional effects. Stell 
and Zhou” have suggested a simple interpolation formula 
for the cavity function y,&L), namely, 

exp[&(l -S$]=<L(l -$JG(r-L)/12, O<r<av 
(l.Jc) 

The presence of the delta function in Mayer function in- 
duces a delta function in the correlation function h,(r) 
with a different coefficient /z called the association param- 
eter: 

hii( - 1 +AL(l -S@(r-L)/12, O<r<av 
(1.4) 

Y&?(L) =v$&) (1 - a)29 (1.11) 

where a is the degree of association and ysB(L> is the 
cavity function of the corresponding reference system in 
which the interaction term CEq. ( 1.2d)] in the Hamiltonian 
leading to bonding has been deleted. It has been shown by 
us6 that there is extensive cancellation of the diagrams in 
the density expansion of the cavity function when the dom- 
inant bridge diagrams, (which are ignored in most liquid 
state approximations) are included and when steric effects 
limit association to dimerization. This analysis6 also sug- 
gests the approximation 

The association number (N$, which is the average num- 
ber of j ions around an i ion, is given by 

I 
L+ 

Wij) ‘Pj o g,(r)4& dr=?rilpiL3/3 (i#j), 71.5) 

where 

YABV) =Y;,(L) - 1+ Cl- aP. (1.12) 

Since there is no bonding term in the Hamiltonian of 

gii(r)=hv(r) + 1 (l-6) 

is the radial distribution function. The density of i,j pairs is 
then 

the reference system, Y:~(L) can be safely calculated with 
one of the liquid state (HNC or PY) approximations. The 
degree of association is then obtained as the solution to a 
quadratic equation determined by Y$~(L) and the associ- 
ation constant at infinite dilution K. = ?r<L3/3. 

pg=pi<Nii> =pjWji) (i#j>. (1.7) 
Note that (NV) is just the degree of association a for a 
symmetrical electrolyte. The equilibrium ratio K for the 
association reaction i + j-+ij can be written as 

=PitNq)/[ (Pi -Pij) (Pj -Pu) I 

=n%L3/[3(1 - (iV$)(l- (A$))] (i+j), Cl.81 

where pf is the equilibrium density of component i. There- 
fore, once the sticky parameter /z is known, the degree of 
association (N,$ and the association constant K can be 
calculated. It is easily verified that Eqs. (1.5) and (1.9) 
reduce to the known results for symmetric sticky 
electrolytes’-’ and for sticky hard spheres’ when the sizes 
are equal. The sticking coefficient 5 is related to the asso- 
ciation parameter /z by3” 

~=C..,&C) (i#j>, 
where the cavity function yii(L,<) is defined by 

(1.9) 

The method that we use to solve the Omstein-Zemike 
equation (OZ) equation for adhesive electrolytes in the 
MS approximation is similar to the one used by Blum’1~‘2 
for the primitive model electrolyte and is an extension, to 
unsymmetrical electrolytes, of Baxter’s Wiener-Hopf fac- 
torization of the direct correlation function for hard 
spheres of unequal size. Throughout this paper we will use 
Blum’s notation as far as possible to facilitate comparison 
with his results when the stickiness is turned off. Wei and 
Blum13 have studied mixtures of ions and point dipoles in 
which there is stickiness between all species which makes 
the analysis, as far as it can be carried, far more compli- 
cated than what we present here for a single unsymmetrical 
weak electrolyte. Their discussion also does not include 
calculations of the association parameter /z and the corre- 
lation functions. This paper is planned as follows: in Sets. 
II and III we discuss the solution in detail for unsymmet- 
rical adhesive electrolytes in the mean spherical approxi- 
mation. In Sec. IV we consider the equal size limit of our 
solution that reduces to the analytic solutions for symmet- 
rical sticky electrolytes. Section V is devoted to the ther- 
modynamics of adhesive electrolytes. 

gij(r,S> = [l +.f~(r,C) ly&,O. (1.10) 
In our earlier work on this model for weak electrolytes 

the degree of association a, which is related to the sticky 
parameter il, was calculated using either the hypernetted 
chain (HNC) approximation or the Percus-Yevick (PY) 
approximation for the cavity function yii(L)at the bonding 
distance L. While these liquid state approximations may be 

II. THE METHOD OF SOLUTION 

As stated in the Introduction we make use of Blum’s 
extension”“’ to electrolytes of the Baxter’s Wiener-Hopf 
factorization of the direct correlation functions for mix- 
tures [see E?q. (2.12)]. We will summarize the method and 
important relations before discussing the solution for ad- 
hesive electrolytes. 
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The Omstein-Zemike 
considered is 

(OZ) equation for the system 

kQi~)=cijiY) + x,@kciki~)*hkjiY)9 (2.1) 

where cii(r) is the direct correlation function and * repre- 
sents a convolution. The closure equations are 

hii(r)= - 1 +X(1 -6@(r-L)/12 (O<r<a‘& 
(2.2a) 

p-0 (2.2b) 
The fh-st relation is exact while the second applies only to 
the mean spherical approximation. Except for a delta func- 
tion at L < aii, the closure equations in the MSA are the 
same when there is no stickiness (i.e., in the primitive 
model electrolyte). Therefore, the theoretical analyses of 
the two should be similar. 

Defining the Fourier transforms 

cyik) = iprpj)1’2 J 
cij(r)exp(zk*r)dr 

cJr> ; sin(kr)dr, (“) 

g@) =(p,pj)1’2 J kv(r)eXp(Zkr)dr 

=47dp,pJ l/2 Jam h,(r) (t)sin(kr)dr, 

the OZ equation (2.1) can be transformed into 

Sg=xk[Sik+ at/c(k)1 [Ski- ekJk)l- 

The direct correlation function is now split into two 
(2.4) 

parts, a short ranged part (G(r) and a remainder equal to 
the long ranged contribution with an exponential damping 
factor containing the parameter ,u, which is introduced to 
avoid the divergence of the integrals like (2.3). Thus 

C&r)=C$r) - lilIl~ZfZj(2/Er)eXp( -/.ZjIyI/T) (Y 
b-0 

w-if>, (2.5) 

where 

(2.3a) 

(2.3b) 

c;(Y) =o (r> ajj). 
Taking the Fourier transform of (2.5) we have 

?q(k) = c:(k) - lim aj/(k2 + p2) (r>ag), 
P-0 

(2.6) 

(2.7) 

where C$(k) is defined in the same way as Eq. (2.3a) and 
aii is given by 

aij=47T(pi pi) ‘/“Zj zj3e2/e== ai(pipj) “2Zj Zj, (2.8a) 

with 

ai = 4n;ae2/e. (2.8b) 

6,=Ck[Gik+ Bik(k)]{Skj- c&(k) +a~/ik~+~~)I, 
(2.9) 

which is the OZ equation for this problem in Fourier space. 
Integrating Eqs. (2.3a) and (2.3b) by parts, one finds 

m c;(k) =2(pipj)“2 
J 

c..(r)cos(kr)S,(r)dr, 
0 

; 

i;TO(k) =2(~~p$‘~ 
J 

O3 k&9cos(kr)J,(r)dr, 
0 

where 

Sii(r)=2n 
J 

m c;(t) dt, 
r 

J&)=2a 
J 

m k,(t)t dt 
r 

J r =Ji/- 277 k&)tdt, 
0 

and 

Jii=2r J a k,(t)t dt. 
0 

The derivatives of i 2.11) give 

(2.10a) 

(2.10b) 

(2.11a) 

(2.11b) 

(2.11c) 

Jj$ r) = - 2prkii( r); 

where the Q(k) functions are defined by 

Sb( r) = - 2m$r). (2.11d) 

The second factor in Eq. (2.9) is factorized by extending 
the method introduced by Baxter to coulomb systems:“‘r2 

S,- C’;(k) + aii/(k” + y2) =C,~,(k) @jk( - k), 
(2.12) 

+ A&iPj)1’2 Ji exp[r( -p + ik) Jdr, 

(2.13) 
in which A, is a constant that will be determined later and 

/zii=(Dj- U/)/2, (2.14a) 

‘Tji’(Oj + CJi)/2* (2.14b) 

Substituting Eq. (2.12) into Eq. (9)., one finds 

Ck[sik+H,kik>l~kjik)=[~!T( -k)lF’, (2.15) 

where 0 ‘( - k) is the transpose of Qii matrix. The in- 
verse Fourier transform of Eqs. (2.12) and (2.15) gives 

4-j 
Joir)=Q,ir> -5-t Zkpk J- 

cjk 
Jik( Ir- tl )Q,j(t)dt ~, 

Jk 

J r - Zkpk Jiki Ir- tl )Akjdt, (2.16a) 
ajk Substituting (2.7) into (2.4) leads to 
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$ir9=qexpi -/J~)/[2Pipip~9”2] f [Qgir> -Ag]0(r--;I/,9 + [Q,(r) -Aji]ei -r-/zi) 

- zkpk(pjpj)“2 
s 

inf(cf& + ekj) 

SUP f.&+’ + $1 
Qik(t)Qjk(t-rr)dtI- x;kpdik 

s s:akj r+aki) Qik(t9dt 

+ ‘kpdjk 
J s~~~ak~r+ak~~ Qik(t)dt--kP~Ai~ikexP[ -u(]r] +2/2kd]/2P, (2.16b) 

J 

where 0 is a Heaviside step function, sup(x,y) means the 
maximum number is to be chosen and inf(x,y) means the 
minimum number is to be chosen between x and y. In 
deriving (2.16a), the electroneutrality condition in the 
form 

xk Pk 
s 

m Jik( t)Akj dt= - Ai/22 
0 

(2.17a) 

has been used. To derive this start by equating the charge 
on ion i with the charge in its atmosphere: 

- zi= 4rrHk zk pk 
J 

Q) kik(t)S dt. (2.17b) 
0 

An integration by parts of SzJik(t) dt and the use of Eq. 
(2.18), which is derived below, leads to Eq. (2.17a). Tak-. 
ing the limit P -+O, we find from Eq. (2.16b) 

au= (PPj) ‘“xk pk A/k Ajk (2.17~) 

Comparing this with Eq. (2.89, one sees that 
zAik=zi ak, (2.18) 

where 

xkpk a$a$ (2.19) 

This implicitly defines ak The relations (2.16) and (2.19) 
are the same as the ones obtained for unsymmetrical elec- 
trolytes in the absence of stickiness.“*i2 In the MSA the Q 
functions are zero just beyond the contact distance: 

QJr) =0 (r> a; ). (2.20) 

We now study the case L = ai,, which means the stickiness 
occurs just short of the contact distance. In the SEM we 
find from Eqs. (2.11b) and (2.2aj that 

Jo( 0; > =Aj( ui$ ) + ~/l4j( 1 - S,)/6. (2.21) 

But from Eqs. (2.16a) and (2.20), it is seen that 

J&ij> -Jg(~;)=Q&,), (2.22) 

which implies that 

Q&T; ) =TA~~( 1 - S,)/6=ep (2.23) 

where Q$ is a shorthand for Q,(uF ) which is a constant. 
From Eq. (2.1 lb) it is seen that 

qyr)=O (r<uij ), (2.24a) 

which, by using Eq. (2.16a), leads to 

Q;(r) =0 (r<uij 9. (2.24b) 

Integrating Eq. (2.24) with the boundary conditions 
(2.20) and (2.23), one finds 

Qoir9=ir--aii9Q&++ ir-0~9~Qj’/2+ Q$ (r<ai;-1. 
(2.25) 

The problem now is to determine the coefficients in the Q 
functions and the constants AU which appear in the defini- 
tions of the Fourier transforms of these functions [see Eq. 
(2.1391. Differentiating Eq. (2.16a) with respect to r when 
r < crib, we have 

&V= Qb( r) + 2?r& ,,k 
J 

@jk 

njk 
(r- ff)Qkj(t)dt- zkpddkj 

- 2aZk Pk J r (r-t)Akidt, (2.26) 
/zik 

where Q&(r) is the derivative with respect to r and the 
constant Jq is defined by Eq. (2.1 lc) . Differentiation again 
of Eq. (2.26) with respect to r leads to 

2a-=Qi(r> + h&pk 
“Tjk 

J aik Qkj(t)dt - 2gzkpk 

XAkj(r-Ajk)* (2.27) 

Define 

Gj= Jr; QijW& 
P 

(2.28) 

Bi= xk pk zk J& (2.29) 

To solve Eqs. (2.26) and (2.27), we need to fix r and we 
choose r = oj/2. (Any other choice of r between 0 and 
uii is permissible, but it leads to solutions too complicated 
to be easily manipulated). Substituting r = as/2 into Eqs. 
(2.26) and (2.27) and making use of Eqs. (2.18), (2.289, 
and (2.29) gives us two relations: 

TUlOj- - Qg(;lji) - aj u~(B; + TX2/4) 

+ (~~d6)PkPk 4 QkjCajk) + Q$ 

- (~~J6)Zkpk &&j 

and 

(2.30) 

27~~i6/~)Q~(~ji) - (12/‘~~)@~+ (6/d)& 

+ 2=-&c& pkj - TajXI, (2.31) 

where we have used 
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Qv(Aji>= - u,Qb+ i+)Q; + & (2.32) 

and the definition 

xi=zkpkZk di (2.33) 

Multiplying (2.31) by d/12, we get after rearrangement 

~o~/6=(oi/2)Q~(;1~~> - f$+ i~4/69~kpk~k~ 

- 77ajxlc$12 ,f (oi/z)@f (2.34)’ 

Using Eq. (2.25) in Eq. (2.28) and combining this with 
Eq. (2.33), we have 
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The solution to the set of Eqs. (2.37) is 

Qii(Ajt) = - TKT~ ~j/A - aj V&Vi + ( 1 - 6,) @, (2.40) 

where 

A=1 - (r/6)&@& (2.41) 

and 

Ni=Bi+ r-X2/(4A) + (T/GA)B@$J$k (i=‘,‘)* 
(2.42a) 

Q~=(~/u~)QJAJ) - (6/49ej+ (4/~~)@~ (2.35) 

Q~=(6/~f)Q&Aji, - (12/d)ej+ i6/~)&* (2.36) 

Therefore, once Q&J> and @, are known, Q& and Q$ can 
be easily calculated. 

Equations (2.30) and (2.34) generate two sets of lin- 
ear equations for Qij($& and G, which are 

Cl- rplo;f/69Ql1- i~2~1.&6)Q21 

ZE- ?rd - apl(B1+ ‘rTX2/4) - (TP~u~&~I&, 
(2.37a) 

(1 - rp1&6)Q12 - (~2~1&69Q22 

=- a-uluz - azaI(B1 + n-x2/4) + (1 - rp&6)@, 
(2.37b) 

( - ~pl~2@69Q11+ i 1 - ~2&69Q21 

=- TCJ~O~ - ala2(B2 I- 71x2/4) + (1 - ~p2&6)@ 
(2.37~) 

( - rpla2&6> Q12 + ( 1 - ~pzdi6) Q22 

The above equation can be solved for Bi when we find 

Bj=Ni--X2/4- (T/6)Z@kN@$ (i=I,2)* (2.42b) 

Substitution of Eq. (2.40) in Eq. (2.389 leads to the solu- 
tion 

K”j=Iq + K”;, (2.43) 

where j$ is given by 

I$‘= - (~4/2A) [aj+ ai/ + r{2uiaj/6A] - (ajd./29 

X[Ni+ i~~/6A>ixl +zkpfld)I, (2.44) 

in which 4i is defined by 

gizZk Pkdc (2.45) 

The second term of (2.43), which depends explicitly on the 
stickiness, has two expressions 

J$=(cJA)(l -rpj0;/6)@ (i#j), (2.46a) 

ek=(rpjo/d/6A)@ (i#j). (2.46b) 

Using these in Eqs. (2.35) and (2.36), we have for the 
coefficients in the Baxter Q-functions 

=- n-4 - a2a2(B2 + ,Tx2/4) - i~pl~2@6)CF, 
(2.37d) 

and 

Q$= (2~/h) [UP + rc;uj uii4A) 1 

+ aj[Ni + rui Pn/(2A) I + ‘ii (2.47) 

and 

(I- ~pl~~/6)~1- (~p2&6>& Q$=(2~/A)[l+~~2oj/(2A)] +~ajP,/h+ (2/~f)Ag, 
(2.48) 

E--- 7&6 + (a1/2)Q11 - n-x1ad/12, 

- (~pl&6>@1+ (1 - ~&i6)@21 

(2.38a) 

=- ~$6 + (cr2/2>Qzr - ~xrar&l2 + (a#)@, 
(2.38b) 

(1 - ~prd/6)& - i~/-&/6)@2 

=- qd/6 + (a1/2)Q12 - ?rxla&12 + (a1/2)@, 
(2.38~) 

- (~pl&6)@2 + i 1 - ~p24/6@2 

=- r&6 + (a2/2)Q22 - rxla20@2, (2.38d) 

where we have used 1 and 2 to represent the two compo- 
nents explicitly and the fact that 

e;“,=Q&@=?ril~:,/6 (2.39) 

as well as the short hand QV = Q&j). 

where the sticky contribution 

hii= (6/ai)@( 1 -ail) - (6/&e; (2.49) 

P, is defined by 

p,=&pEpktzk + N/&Q), (2.50) 

and aj (or Ai/z,) is defined by Eqs. (2.18) and (2.17). TO 
determine aj we go back to Bq. (2.16a), set r = 0 multiply 
by pi Zi and sum over i on both sides to get 

Bj=ZipiZi Q,(O) - (ai/2)BtpiG + BipiZiBfaj/Zii 

f Zipi BiK$$ (2.51) 

Combining this with Eqs. (2.43)-( 2.5 1) we find, after 
much algebra, that 

aj= - (Z/D) [NJ+ rgjPJt2A) -‘riIy 

with 

(2.52) 
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D=Tc p,&k + KP-~~, (2.53) 

To=Y$+ (Bi/Zi)$fp (2.54) 

cj=(l-L$)( -1+3+$)@/2+3(~ 

- +$/(2c$, (2.55) 

Tj= %i ,Oi ZiTp (2.56) 
Note that when the stickiness is zero TV, l$t and rj are 
zero. What has been done so far is to express the constants 
Q& Qj’, and aj in terms of Nj, /2, and rj, the determination 
of which is discussed in the next section. 

Ill. THE DETERMINATION OF I’, THE CONTACT 
VALUE g,+$) AND il. 

The symmetry of the direct correlation function 
cii( r) and Sii( I) requires 

Qg(/z,) - A,= Qji(/z+y) - Aji, (3.1) 
which can be seen from Eq. (2.16b). Substitution of Eqs. 
(2.40) and (2.18) in (3.1) produces another symmetric 

* relation 

aj(zi + CT~ Ni) = ai(Zj + ~1 Nj) , 
which suggests the relation 

(3.2) 

(Zi + a&Vi)/ai=D/(2J?), (3.3) 
where D and Ni are detined by Eqs. (2.53) and (2.42a), 
respectively, and F is a new constant. A similar scaling 
assumption has been used earlier by Blum”“2 to solve the 
primitive model electrolyte (charged hard spheres) in the 
MS& it is preserved here in the MSA solution of the SEM 
because of the symmetry of the sticky interaction. It fol- 
lows that 

ai= (2I?/D) (Zi + Uflf). (3.4) 
Inserting this in Eq. (2.19) and making use of Eq. (2.53) 
we get. 

4r2= Da~=a$Zipi(zi + Npi)2=a~Zip~~ 2, (3.5a) 
with a modified valence zj’ = Zi + Ni op Comparing this 
with K defined by 

/2= (4rrae2/E)Bip~=a~Zjp~, (3.5b) 
where UK is the Debye screening length: it is seen that 
2r ~-t K as the density Pi + 0. From Eqs. (3.5a) and (2.52) 
we have 

- r(zi+ ~iNi)=Ni+.r~iP,/(2A) -pi (3.6) 
or 

Zi’=Zi+Niai=CZi-?r~P~/(2A) +a;ri)/(l+I’ci). 
(3.7) 

Also P, defined in Eq. (2.50) can be written as in terms of 
I and r, To do this start with Eq. (3.7) multiply by PjOi 
and sum over i which leads to another expression for P,: 

P,=p”, $- f3 - ‘Zipi O+i( 1 + rai) - ‘, (3.8) 

where 

~=Ct2-*BipiZ&7i(l +rffi)-‘, (3.9) 

a= 1-t b7-/2A&[pdk/( 1 -t TOI> 1. (3.10) 

Note that rf is zero when there is no stickiness and the 
expressions for F and P, then reduce to Blum’s results for 
unsymmetrical electrolytes. Substituting Bi from Eq. 
[2.42(b)] and TV from Eq. (2.54) into Eq. (2.56), we can 
get a rather simple expression for 7.~ 

rii=2Vj(Zj + UjNj>/ff~= 2Vj Z/! /Uq (i#i), (3.11) 

with 

‘Vj=TApj a,/12 ci;fi). (3.12) 

Combining Eqs. (3.11) with (3.7) leads to the solution for 
zj for a single electrolyte: 

z; = [ ( 1 + I’a2> (zi - ?r6TP,/2A j 
+ (2~2ot/a,2) (Z2 ~ rr&P,J2A)]/II, 

z.$=[(l +rcr,)(Z2-%-&PJ2A) 

+ (‘&~2/~12>h -~&'n/Wl/K 

where 

(3.13a) 

(3.13b) 

n= (1 + rOl) (1 + ru2> - 4U1~2V1V2/~2. (3.14) 

Substituting Eq. (3.11) into P,, we get the final solution for 
zi’: 

2; =i ( 1 + ru2)z: + 2&01h712 

-I- ~pdv~& /CAfh( I+ m) II/% 

Z; = { ( 1 + rgl IZ; + ~~~~~~~~~~~ 

- 77p2&1dW~,2( 1 + rd 13/%, 

where 

f&=Il + (~~~/ASloi2)X~,~p~vj( 1 - S,> 
+ (2?ru~azv1v2/An~,)Bipi oi/(l + rg& 

and 

Zy=Zi - rpO,4/2A, 

z,-z& - 224. 

(3.15a) 

(3.15b) 

(3.16) 

(3.17) 

(3.18) 
Equations (3.15) together with Eq. (3.5a) give a self- 
contained set of equations for the parameter I?, which can 
be solved by iteration once the sticky parameter il is 
known. To determine J, we need another closure equation, 
which is discussed following the calculation of the contact 
value of the correlation function. 

This is obtained by differentiating Eq. (2.16a) with 
respect to R and setting F = 02 : 

- 2%-o; h&7$ > 

= -Biaj+xkpk ,Jik(lp$ -tl)Q&(t>dt 
s 

--kpk 
s 

‘J!(/u$ -tl)Akjdt, ~ zk (3.19) 
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I 

a j[ d Bi+?r~kPkZkU~k-2VjZj/Uij] -2Vj~j/aii[Qjj--ajQ~/2] -2'iTxkPkdk[(/Zik/2 $ flk/3)Qij 

- Uk(aik/6 + U,J8) Qij] f Z?rOfVi/CF~ - ?r/zOiiy/s,f3, (3.20) 

where we have used Eqs. (1.4), (2.11d), and (2.25). Sub- 
stituting Eqs. (2.47), (2.48) for Qhand Q;and Eqs. (2.52) 
for ai we find, after much algebra, that 

where 
+ &$ 1, (3.21a) 

&fl$ > = - (l/(A$ >k&‘& ti#j) (3.21b) 

or 

&&- - (l/(A&&v,&j 

+ au~~jl(6uiJ (i#j) (3.21~) 

arises from the adhesive interactions determined by a. It is 
seen that gG(oif ) = gji(o$ ) as required by symmetry. 
The first term in Eq. (3.21a) is a pure hard sphere contri- 
bution while the second term Dai ai/2 is the electrical con- 
tribution in the MSA to the distribution function at contact 
which also depends on ;1. This term vanishes when the 
charges are zero. Thus Eq. (3.21) also provides the distri- 
bution functions at contact for adhesive nonelectrolytes 
when there is adhesion only between different species. 
When the stickiness is removed (Vi = vi = 0) we get the 
known contact value for an unsymmetrical electrolyte. l4 It 
is shown in Sec. IV that the earlier results for charged and 
uncharged systems are recovered in the equal size limit. 

To determine the sticky parameter /2, make use of Eq. 
( 1.10) and the definition 5 = l/r, when we have 

a7=y12b12), (3.22) 
where stickiness is present only between oppositely 
charged ions. Here, y12(a& ) can be determined by using 
different approximations.3V5 In the PY/MS and HNC/MS 
approximations, 

Ylz(q2) =iaz(a;f > - c12(q$ ) (PY/MS), (3.23a) 

YIP =exp[h2(ali I- CI~(Q~~ > 1 @NC/MS), 
(3.23b) 

where we have used the subscripts 1, 2 to express the two 
species explicitly and the correlation functions g12(a& ) 
and c12(o& ) are determined in the MS approximation. In 
either case since r is a function il, Eq. (3.22), with (3.23a) 
or (3.23b), and Eq. (3.5a) have to. be solved numerically 
for 1. Another way to determine /2, which makes use of 
liquid state approximations for the corresponding non- 
sticky reference system [see Eq. (1.12)] is discussed by us 
in Ref, 6, 

I 

In summary, the final solution of the unsymmetric 
SEM in the MSA is obtained from the simultaneous solu- 
tion of Eq. (3.5a) and Eq. (3.22) for I’ and il, in which 
zi are given in Eqs. (3.15a) and (3.15b). 

IV. THE EQUAL SIZE LIMIT 

Before we continue with the study of the thermody- 
namics of the adhesive electrolyte, we will check what hap- 
pens when the ion sizes and valences are equal in magni- 
tude. First recall for the totally symmetric electrolyte that 
ci = oj = CT, zi = - zj* pi = pj = p. Using these conditions, 
we have 

uo=~, a,=o, (4.1) 

77 = r/&/6, Xi=O, (4.2) 

A=1 -277, (4.3) 

v=vI=v2=arl/2. (4.4) 
From Eqs. (3.15), it also follows that 

z; + z;=o, (4.5) 
which, together with Eq. (3.8), shows that 

P,,=O, N1+N2=0. (4.6) 
Substituting Eqs. (4.1)-(4.6) into Eq. (3.13), we are led 
to the simple expressions 

Zi= [Zi( 1 + r-0) + 2VZj]/[ (1 + I?fJ)2 - 4?] (i#j> 
(4.7a) 

or 

Nia= -zi[I’a(l + ITa) +2v-42]/[(1 +I’a)” 

- 4$] (4.7b) 

which, when substituted into Eq. (2.53), leads to 

D=xkpk(Zk+N,@k)2=(1 + rO+ 2V)-28kp&p (4.8) 

Also substituting Eq. (4.8) and (2.8b) in (3.5), we have 

2k(i + rU+ ~V)=~QIO[~~P~~Z~]~‘~=K~, (4.9) 

where K is the Debye screening length defined by 

2 = (4s$e2/e) Zk pd. (4.10) 

Equation (4.9) is a quadratic equation whose solution is 

2r0= - (1+2~) + [(i +~Y)~+-~Kc#/: (4.11) 
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where the sign in front of the root is the one  which gives 
the known result in the MSA when the stickiness is turned 
off (v=O). Combining Eqs. (2.42b), (2.29), (l.l), and  
(4.6), we have 

s 

m 
f rgii(rW 

“ij 

Nj=Bj=ZkpkZkJkf= -ptZiJo (i=1,2), (4.12) 
where we have used zj = - .zj pt = p1  + p2  and  the &fi- with 
nition 

s 
a$ rgii( r>dr, (5.2a) 

0 

JD=(JIz - J11)/2. (4.13) 
The  relation between Jo and  F, from Eq. (4.12), (4.7), 
and  (4.11), is 

+PiPjzizj om s 
rgiiW& (5.2b) 

and  gXsb is the binding energy caused by the stickiness: 

ppJ~= (ra + 2~)/(1 -t I?a + 2~) (4.14) 
Combining (4.9) and  (4.14) produces a  quadratic equa-  
tion for ppJD; the solution of which is 

ppJD={(l +KU+2Y) - [(I +h’)2+2K(T]1’2}/K(T. 

(4.15) 

h-lb= - ; &dpjpj 0  
X s 

$  d  exp[ - L$(r) 1  

0 &’ 
yv( r) 4?r? dr 

(5.2~) 

Except for a  factor of 2a  in the definition of Jo and  a  factor 
of 2  in the definition of v, this is identical to the result given 
earlier by Rasaiah and  Lee3 for an  adhesive symmetrical 
electrolyte. 

Substituting Eqs. (1.2d) and  (1.10) into Eq. (5.2b), we 
have 

It follows from Eq. ,(3.21), that the distribution func- 
tions at contact, for the equal  ion size case, are given by 

&(a+ ) = (1 -t- @ /A2 - bj/~~)I’~/(rp,a) - (2v/A) 
+ /2&j/6, (4.16) 

where we have used the fact that for the symmetrical case 

q=2+/(1 f I-0 + 24 (4.17) 
and  

D=p,& 1  -P~J~)~. (4.18) 
This result is also identical to the solution given earlier by 
Rasaiah and  Lce3 

x 
s 

ug 
0 

exp[&(l -$)]yii(r)?dr 

= - 2?rezZj,jPjPj(l -6,1)[oiSyjj (0; )/12] 
= - (E#)Zji@j(NQ) (1 - S,), (5.3) 

where we have used Eqs. (1.3~) and  (1.5). To  derive the 
PYQ, we rewrite (5.2a) in the more convenient form 

E-“,y=($)~~pjZ$i- (~)Z,pjp/l,l/J~ rgg(r)dr 

e2  
E 2  Z ipjZjNi- 

0  
BiJpi zi Z j<Ng> ( 1  - 60). 

(5.4) 
From Eq. (3.6), we have 

V. THERMODYNAMICS OF THE MODEL ADHESIVE 
ELECTROLYTE 

Ni= - [I$+ rojPJ(2A) - rj]/( I + rui). (5.5) 
Substituting Eq. (5.5) into Eq. (5.4), we have 

EXsa= - ( e2/E) Z i pi Z[ ( 1  + raj) - ’ [ Fzj + rui P,/2A 
W e  will now discuss the thermodynamics of the un- 

symmetric adhesive electrolyte. The  excess energy per unit 
volume has the form 

E”= - (;)pwpipjJo,= dexp[ --J+(r)] 
x [J$(r)47rr2 drl 

- T i] - (e2/(2Eu~>)Zjjpjzjzj{Nii) (1 - 6,). 

(5.6) 
F inally, we have 

= -, ( ;)xjJpjpjJ~ dexpE ;-Q(r)] 

x [Yj#)47r~ drl 

Ee”= - Z iJpi(Ng) ( 1  - 6,) [ e”zj z/( 2eoii) 
+ e/2] + Ii-, 

with 
(5.7a) 

Px*C= _ (e2/e)2,pizi( 1 + rai) - l[rzi 
+ TUj PJ(2A) - rj]. (5.7b) 

+ (k)HiiPiPjJi% U~~~~g~~~~4TrZ Ch 

= E&b + g&a, (5.1) 
where uii(r) is defhred in. Eq. ( 1.2), l?*” is the excess 
energy of the charge interaction part given by 

It is seen from Eq. (5.7) that Blum’s result for the primi- 
tive mode l electrolyte is recovered when the stickiness is 
taken away. 

As discussed in many places,2-6 the change in Helm- 
holtz free-energy caused by turning on  the stickiness is 
given by 
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&f”*st,/(NkBT) = [AeX(SEM) - AeX*‘(PM) l/(Nk,T) 

= - (np;td2) fy12(c’)d< 

_ (:‘@) I,” lny12(il’)dA’, 

(5.8) 
where AexJo (PM) is the excess Helmholtz free-energy of 
the corresponding charged system without stickiness 
which is the primitive model (PM) electrolyte. Here, 
yi2(n) can be found either from PY/MS- or HNC/MS 
approximation or from our approximation.6 In HNC/MS 
approximation [see Eq. (3.23b)], we iind using Eqs. 
(3.21), (2.5), and (2.6) that 

1 

[D(/z’)a2(d’)a,(~‘)d/l’, 

(5.9) 

while in the PY/MS approximation, no simple expression 
is obtained for Eq. (5.8). The total excess Helmholtz free- 
energy can now be expressed as 

AAeX/(NkBT) = [AAeso(PM) + AA”@]/(NkBT), 
(5.10) 

where A4”>’ (PM) is known analytically in the mean 
spherical approximation and is given by” 

hAex>‘(PM)/(NkBT) = (A -- Ah”)/(NkBT) 

=lFso/( NkBT) + ro3ic 3?rpt) 
(5.11) 

and E”X*o and F” are the energy and shielding parameter for 
the primitive model electrolyte. l1 

When the charges are turned off, the MS approxima- 
tion becomes identical to the PY approximation and we 

can determine the excess free-energy difference between 
sticky nonelectrolytes (sn) and hard spheres (hs) analyt- 
ically in the two approximations that have been considered! 
From Eq. (5.9) we have in the HNC/PY approximation 

A ex,sn _ Ae.%hs 4~1~2 -- 
NkBT = pr 

and from Eqs. (3.23) and (518) we find that in the PY 
approximation 

A ex,sn _ Aexhs 
m37PlPzd2 m - n/Z 

NkBT = 3nPt 
ln----- m (PY), (5.13) 

where m = ( l/(a12A))[a12 + &a2at/(4A)] and n 
= (7fcr12/( 12A) ) Zk p@$ When the sizes are the same, the 
corresponding results for sticky nonelectrolytes are recov- 
ered.’ The osmotic coefficient and activity coefficient can 
now be obtained in the usual way by differentiation with 
respect to the electrolyte concentration.2-5 
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