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An integraI equation [Rasaiah and Zhu, J. Chem. Phys. 98, 1213 (1993)] for the survival 
probabilities of electron transfer (ET) between thermally equilibrated reactants in solution is 
extended to include quantum effects on the ligand vibration and ET from a nonequilibrium initial 
state. We derive the kernel of the integral equation using a Green’s function technique and 
demonstrate that it is determined by the solvent dynamics, the relative contributions of ligand and 
solvent reorganization energies, and the barrier heights for electron transfer. The extension of the 
theory to ET from a nonequilibrium initial state modifies the integral equation to provide the 
survival probabilities for the reactants that are not necessarily kinetically of first order, but can be 
directly compared with experiment. The long time rate, however, shows a simple exponential time 
dependence that is analyzed in terms of a rate constant with a diffusive’ solvent controlled 
component and a remainder. .The effect of solvent dynamics on the diffusive part is governed by the 
same factors that determine the kernel. We find that the fast diffusive mode (small relaxation time) 
affects the rate of ET reactions with high barriers, while the slow diffusive part (large relaxation 
times) influences the rate when the barriers are low. Quantum corrections to these effects are 
calculated using the semiclassical approximation. The theory is used to analyze the ET kinetics of 
betaine-30 in glycerol triacetate (GTA) over a 100” temperature range and the influence of the 
details of solvent dynamics on the rates of-electron transfer is elucidated. An appendix discusses 
improved saddle point approximations for the rates of electron transfer reactions calculated using 
the golden rule. 0 I994 American Institute of Physics. 

I. INTRODUCTION 

Electron transfer (ET) reactions are ubiquitous in chem- 
istry and theories of their mechanisms and rates continue to 
develop as new experimental observations are made. The 
energetic control of the rates of these reactions in solution is 
well understood,’ but many other aspects of ET reactions in 
chemical and biological systems remain to be investigated.’ 
Quite recently, advances in ultrafast spectroscopy have led to 
renewed interest in the role that solvent dynamics play on 
electron transfer reactions in solution3-* This paper concerns 
this problem. 

Our main theoretical tool is an integral equation approxi- 
mation for the coupled reaction diffusion differential equa- 
tions governing reversible electron transfer rates in solution 
using a model proposed by Sumi and Marcus.3 This equation 
is exact in several different limits and is quite accurate be- 
tween them. It was discussed by us in a series of papers4-6 
and is easily solved on a personal computer6 providing a 
simple way to calculate the rates given the details of the 
solvent dynamics, the total reorganization energy X, its par- 
titioning between liquid vibrations X, and solvent polariza- 
tion fluctuations X0, the standard free energy change AGO, 
and a parameter k, that represents the effects of tunneling 
and curve crossing. The concentrations of the reacting spe- 
cies can also, in many cases, be represented analytically by 
single or multiexponential functions of time that are, as 

*IPresent address: Department of Chemistry and Biochemistry, University of 
Colorado, Boulder, Colorado 80309. 

shown by a specific example in this paper, very useful in the 
analysis of experimental data. 

A limitation to our integral equation is that it is restricted 
to ET from thermally equilibrated initial states that precludes 
its application to experiments in which the reactants are pre- 
pared, e.g., by laser excitation. Another unsatisfactory fea- 
ture is that the kernel of the integral equation was obtained 
rigorously5.6 only for ET reactions in non-Debye solvents 
when ligand vibrations do not contribute to the activation 
energy. However, ligand vibrations play a significant role in 
many reactions that require modification of the kernel to in- 
clude this feature also if the results are to be generally useful. 
This was done earlier by introducing an effective time- 
independent operator in the adjoint differential equations 
without complete justification.5 A third limitation is that the 
ligand vibrations were treated classically and transition state 
theory was used to calculate the rate coefficients. 

In this paper, we extend our theoretical work to include 
ET reactions from a nonequilibrated initial state. This leads 
to a modified integral equation that is also easily solved on a 
personal computer with only trivial changes in the numerical 
methods used earlier.6 We demonstrate how the kernel of the 
integral equation can be derived using a Green’s function 
technique that is applicable even when the ligand vibrations 
contribute significantly to the activation energy of ET reac- 
tions in either Debye and non-Debye solvents. We extend 
these results further by treating the ligand vibrations and rate 
coefficients quantum mechanically using the golden rule. 
This leads to a modification of the kernel that presents no 
additional difficulties in the numerical or analytic solutions 
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to the integral equation. We also discuss how the effect of 
solvent dynamics on the diffusive part of the ET rate con- 
stant is modulated by several factors such as the contribution 
of the outer-shell solvent fluctuations to the total reorganiza- 
tion energy, the barrier heights for the forward and reverse 
reactions, and quantum effects on the Iigand vibrations and 
the rates of barrier crossing. The theory is used to analyze the 
ET kinetics of betaine-30 in glycerol triacetate (GTA) that 
has been studied experimentally9 over a wide range of tem- 
peratures, and we elucidate the conditions under which the 
details of the solvent dynamics, determined by experiment, 
computer simulation or theory, can affect the rates of elec- 
tron transfer. The mathematical treatment presented here ex- 
tends and simplifies our earlier derivation of the integra1 
equation for the survival probabilities,4-6 making it broader 
in scope, and we hope, more readily accessible to others 
interested in this field. 

from its equilibrium value P?(r) before ET when the 
charge distribution is that of the reactants. It is defined by 

x(t)2=(47rlc) IPex(r,t)-P~‘eX(r)12dr, 
I 

in which c = 1 /E, - 1 /e. is the Pekar factor, & and ~0 are the 
high and zero frequency dielectric constants, respectively, 
and Pex@,t) is the difference between the total and electronic 
polarizations of the solvent. The reorganization energy 
A=A,+A, has contributions from ligand vibrations 
Ag=aq$/2, and “outer sphere” solvent polarization fluctua- 
tions X0=x$2, where 

This paper is subdivided as follows: Section II summa- 
rizes the theoretical background to the Sumi-Marcus model 
of ET and the coupled reaction-diffusion differential equa- 
tions governing the time dependence of the solvent polariza- 
tion iluctuations. A Green’s function method is used, in Sec. 
III, to derive the integral equation for ET transfer from non- 
equilibrated initial states in any solvent. We follow this up in 
Sec. IV with a semiclassical treatment of the effect of ligand 
vibration on ET rate coefficients. Section V discusses how 
the solvent controlled rate constant is modulated by the slow 
and fast relaxation times, the barrier heights, and ligand vi- 
brations, and we use the theory to discuss an ET experiment 
jbetaine-30 in GTA) in Sec. VI. Section VII discusses the 
effect of the details of the solvent dynamics in acetonitrile on 
the rates of model ET reactions. Appendix A contains a brief 
discussion of the Green’s function operator for ET in Debye 
solvents when the analysis becomes simpler. Appendix B 
discusses saddle point approximations to the golden rule rate 
constant for ET rates and improvements to the semiclassical 
rate coefficients. 

x~=(47r/c) IP~,ex(r)-P~.ex(r)12dr. 
I 

(2.4) 

Here P?(r) is the equilibrium excess solvent polarization at 
r due to the product charge distribution. Both P”“(r,t) and 
P?(r) (i = 1,2) have contributions from the translation and 
rotation of the solvent molecules, but not from electronic 
polarization that is assumed to be instantaneous and has been 
subtracted out. The time correlation function of the excess 
polarization fluctuations is defined by 

A(t)=(6x(t)Sx(0))l(Sx2(0)), (2.5) 

where &x(t) =x(t) -x0 and &u(O)= -x0. It is this function 
that is related to the solvent dynamics. 

Electron transfer, in the Sumi-Marcus model, occurs 
with rate coefficients k,(x) over a range of polarization fluc- 
tuations. Generally, ligand vibrations also assist in the acti- 
vation; the extent of the vibrational stretching q needed to 
reach the activated state for a given fluctuation x of the sol- 
vent polarization is obtained from the intersection of the two 
free energy surfaces along xx0 + aqqo= X + AGO. Transition 
state theory provides the rate coefficient 

ki(x)=v, exp[-/ZAG:(x)] (i=1,2) i2.6) 

at each polarization fluctuation X; it is a Gaussian since the 
corresponding vibrational free energy barriers AGT are qua- 
dratic. It is readily shown that3 

II. THEORETICAL PRELIMINARIES 

In the Sumi-Marcus model3 of electron transfer, both 
ligand vibration and solvent polarization fluctuations contrib- 
ute to the total free energies of the reactants (i= 1 j and prod- 
ucts (i=2) given by 

Vl(q,x)=aq”/2+Vl(x), (2.la) 

V2tq,~)=aiq-q0)~/2+V2txj, (2. lb) 

where 

AG;(x)=(1/2)(XolX,)(x-~2,)2=[AG’(x)-X4]2/4h,, 
(2.7b) 

where 

x,,=(h+AG0)/(2Xo)1’2, (2.8a) 

~2C=(x+AGo-2x,jl(2xo)1~2. (2.8b) 

and the free energy gap 
VI(X) =x92, (2.2a) 

V&~)=(x-x~)‘/2fAG~. (2.2b) 

The vibrational motions of the ligands are represented col- 
lectively by the coordinate q and AGO is the standard free 
energy change for the reaction. It is assumed that ligand 
vibration is much faster than the outer-shell solvent reorga- 
nization energy x(t) that is proportional to the mean square 
fluctuations of the excess solvent polarization P”“(r,t) away 
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AG”(x)=AGo+Xo-~(2Ao)1’2 (L8c) 

which depends on the slow coordinate n. In Eq. @6), 
p= llk,T, where k, is Boltzmann’s constant and the preex- 
ponential factor may be written as 

v,=ko[(/3Ao/2rA,)]“2, (2.9) 

where k. is a constant. Its calculation is a quantum mechani- 
cal problem since it reflects the effects of tunneling through 

(2.3) 
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the barrier, electronic coupling between the free energy sur- 
faces where they intersect, and other characteristics of the 
electron transfer reaction, e.g., by whether the reaction is 
adiabatic or not. For nonadiabatic reactions 
u,=(J2/fi)(pT/Aqp2, where J is the electronic coupling 
matrix element of the reactant and product surfaces at their 
intersection and 15 = hl(2rr), where h is Planck’s constant. 

Fluctuations in the solvent polarization are determined 
by the motions of many solvent molecules that are assumed 
to be similar to Brownian motion in the overdamped limit. 
The probabilities P,(x,t) and Pz(x,t) of finding the reactant 
and products, respectively, with a fluctuation x in the solvent 
polarization at time t are then given by pair of coupled 
reaction-diffusion equations3-s 

dP2(x,t)lst=[L’,-k2(X)lPZ(X,t)+kl(x)P*(x,t), 
(2.10) 

where the generalized Smoluchowski operator 

Li=D(t){d2/~~2+pdldX[dVi(X)ldX]}, (2.11) 

in which the diffusion coefficient o(t) is related to A(t) 
bY lo.11 by 

D(t)= -( 1/,6)d In A(t)/&. (2.12) 

It has been shown that A(t) is identical to the time cor- 
relation function s(t) of the Born free energy of solvation of 
the reacting intermediates when the solvent response is 
linear.5*6 Solvation dynamics in Debye solvents is character- 
ized by a single relaxation time 7r., when s(t) =exp( - t/~-~) 
and Pa(t) = l/7, is a constant. However, s(t) in many sol- 
vents has a more complicated time dependence spanning 
several relaxation times. In this case, D(t) becomes time 
dependent. s(t) can be determined experimentally using a 
suitable probe in time delayed fluorescence spectroscopy 
(TDFS) experiments’,” assuming that the system studied 
(e.g., the probes in TDFS experiments or the Hamiltonian in 
computer simulations) mimics the reacting intermediates 
closely enough. 

The solution to the coupled differential equations is 
obtained3” by transforming to the adjoint form 

dql(x,t)ldt= -CHlfklix)lql(x,t)+ka(X)q2(-X,t), 
(2.13a) 

dq2(x,b)ldt=-[H2+kl?(x)lq2(X,t)+kl(X)q*(X,t) 
(2.13b) 

using the substitution 

qiix,t>=Pj(x,t)lgiixj, (2.14) 

where 

=exp[ -pVl(x)12]I 
I 

exp[ -pVi(X)/2]dX 

(i= 1,2). 

In Eqs. (2.13), 

k;ixj=k,ixjgLiXjIg2iX), 

(2.15) 

(2.16a) 

(2.16b) 

and 

H,(t)= -D(t) $+ Eq; [fy2-!t!$] 

(i= 1,2). (2.17) 

For the parabolic potentials considered in Eq. (2.1), 

H;(t)= -D(t)[a2/Jx2-(/3x)“/4+P/2] (2.18) 

is similar to the Hamiltonian for a harmonic oscillator except 
that it has no zero-point energy. The eigenvalues are 
~,(t)=n/lD(t)= --ml In A(t)ldt(n=0,1,2 ,... ), i.e., 

Hiitjlull,i)=~,ifjlU,,i), (2.19) 

where Iu~,~)‘s are the eigenkets and Iuo,J = Igi) is the ground 
state eigenfunction. Note that the time dependence of H,(t) 
leads to time-dependent eigenvalues in non-Debye solvents. 
The eigenkets are, however, time independent and, after a 
simple change of variables, they are seen to be essentially 
those of a harmonic oscillator.3,4 In Debye solvents, D(t) is 
time independent and the eigenvalues of Hi are E, =n/rL . 
The ground state eigenfunction gi(X) satisfies .the equation 
H,gi(x)=O for (i= I ,2). 

The survival probabilities and thermally averaged rate 
constants are3-s 

Qiitj= I giixjqiix~t)~x=(gilqi(t)) (i= 1,2). 
(2.20) 

kie=(giix>lkiix)Igiix>> ii== 1,219 (2.21) 

respectively, and the initial conditions, written as 
ql(x,O)=fl(x) and q2(x,O)=O, imply 

Ql(Oj= f hNWx=(g~lf~)= 1, (2.22a) 

Q2(Oj=O. (2.22b) 

Carrying out the integration in Eq. (2.21) using Eq. (2.15), 
one finds that the averaged rate constants in the forwsird and 
backward directions are given by 

ki@=U eXp(-PEi) (i= 1,2), (2.23) 

where 

E,=h(l+6)2/4, (2.24&j 

E2= h( 1 - S)2/4 (2.24b) 

are the activation energies in the forward and reverse direc- 
tions, respectively, and S= AGO/X. As expected E, -E, 
= AGO and it follows that 

kze=kle exp(pAG’). (2.25) 

The preexponential factor in Eq. (2.23) is v=~,(h,lX)“~. 
For nonadiabatic reactions, u= ( J2/R) (j?dX) ‘12, where J is 
the electronic coupling matrix. 

In the next section, we consider the the derivation of our 
integral equation for the survival probabilities for ET transfer 
reactions from a nonequilibrated state in any solvent for 
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which the time correlation function A(t) is known. As dis- 
cussed earlier, this can be obtained from experiment, simu- 
lation, or theory when the solvent response is linear. 
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C2=[l -Ajt)]/[ 1 +A(t)]. (3.8b) 

That this is indeed the case can be verified by direct substi- 
tution in Eq. (3.1) taking note of Eq. (2.12)! As t-0, 
A(t)-+ 1 and G&y;tj-&x-y). 

The solution to Eq. (2.13) with initial conditions 
ql(x,O) =fl(x) and q2(x,0)=0 can now be written as 

Ill. GREEN’S FUNCTION SOLUTION FOR ET 
IN NON-DEBYE SOLVENTS 

Our solution of Eq. (2.13), which leads to an integral 
equation for ET from an arbitrary state Ifr), starts with the 
Green’s functions G,(x,y;t) that are the solutions to 

6lli-w)’ s 
dy Glix,y;tjf,iy)- d dt’ 

I I & GI 

xix,Y;t-t’)rkl(Y)qI(Y,t’)-k;(Y)q2(Y,t’)l, 

(3.9a) 
dG&~;t) 

at fHi(t)Gi(x,y;t)=G(X--?‘)S(t) (i= 1,2). 

(3.1) 
To determine this, consider the (Schrodinger-like) equation 

%=-H,(t)P, (i= 1,2). (3.2) 

The time dependence of the Hamiltonian is only in the factor 
D(t) and in this case 

*i(X,t)=C 
11 

exp - JiHi(r’)dt’ U,,i(X), 
[ 1 (3.3) 

where u,Jx)‘s are the eigenfunctions of Hi(t). The eigen- 
values of Hi(t) are E,~,i(t)=-nd In A(t)/dt. Using this in 
Eq. (3.3), we have 

“Ilri(x,t)=C exp[n In A(t)]u,,i(x). 
II 

(3.4) 

The Green’s functions G,(x,y;t) are the density matrices 
defined by 

Giix,y;Q=C 
n 

U:iix)eV[ - /iHit’)df ‘1 u&Y) 

(i= 1,2), (3.5) 
where it follows, from the eigenvalues of Hi(t), that the 
argument in the exponential is IZ In A(t). The corresponding 
Green’s function operator is 

Gi(t)=x I~,,Jexp[n In A(t)](u,,i]. (i= 1,2). (3.6) 
II 

When ET occurs in Debye solvents, H,(t) is time inde- 
pendent and n In A(t) = -n/T,. The Green’s functions are 
then essentially the density matrices of a Harmonic oscilla- 
tor. It has been discussed elsewhere,3*4 where it was shown 
that 

Gl(x,y;t)=(2~~,TC,)-5’2 exp{-(p/8)[(x+y)2Cz 

(3.7a) 

G2(x,y;t)=(2rrkBTC1)-“2 exp(-tP/8)[tx+y-2xo)2C2 

+(x-yj2c,I}, (3.7b) 

in which Cr=[l-exp(-2t/TL)], Ca=tanh[t/(27,)], and 
Cs = l/Ca. This suggests that the general solution for non- 
Debye solvents has the same form except that 

C,= 1 -A(t)‘, (3.8a) 

q2t-w = - I I 
’ dt’ dy G2ix,v;t-t')[kz!y)s2iy,~'j 

0 

-G(Yh(YJ’)l. (3.9b) 

Taking the Laplace transform with respect to time, we have 

qltx,s)~= 
I & Gix,~;s).f~i~)- I 

dy GI(X,Y is) 

x[k,(Y)sl(Y,s>-k~(Y)q2(Y;s)l, (3.1Oa) 

q2i-v) =- 
I 

dy G2ix,y;sj[k2iy)q2iy,s) 

-k;(hdYv41, (3.10b) 

where, in our notation, Gi(x,y;s) is the Laplace transform of 
Gi(x,y;t). It is convenient to define the operator 

Oi(S)= 
I 

dy Giixvy;sjt ~ (3.11) 

from which it follows that O~(sjlgJ=lgJ/s. This enables 
Eq. (3.10) to be rewritten as 

Iql(x,s))=Ol(s)lfl)-Ol(s)Ck,Iql(y,s))-k;lqz(y,s))l, 
(3.12a) 

Iq2(X,~))=-~2(~)[k2lq2(Y,~))-kilq~(y,s))l. (3.12b) 
It is shown in the Appendix that Cl(s) = (s + Hi) -I when the 
Hamiltonian is time independent (Debye solvent). We also 
note that the inverse Laplace transform of (T(X) I Oi(s) [q(y)) 
is (r(x)IGi(t)Iq(Y))* where the bra-ket notation implies 
multiplication and integration over the variables x and y. 

Equations (3.12) are a set of equations. that are decou- 
pled by inserting the approximation3’4 

l~k,‘Igi)(gikil=k,‘Ikigi)(gil (i= 1,2) (3.13) 

after k, and before k; in Eq. (3.12a) and similarly in Eq. 
(3.12b). Decoupling Eq. (3.12), we find 

lq~ix,s))=~~iSjlf~)-Gk;,l~,is)lk,g~), (3.14i) 

Idw))= -CkG%Wlk2g2), (3.14b) 

where 

C=(g~lk~lq~is))-(g2lk21q20). (3.15) 

Taking the scalar products of Eq. (3.14a) with 1 k rg r) and Eq. 
(3.14b) with ]kzg2), we find on subtraction that 
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C=(glk,l~I(s)lfl)l[l+a,,(s)+a,z(s)l (3.16a) where C is given by Eq. (3.16). Expandingf(yj in the set of 
eigenfunctions of H, (tj and inserting this in Eq. (3.16), we 
have 

XII1 +a,l(Sj+%,(sjl, 
where 

(3.16b) 
CL1 +~,,t~~+~,2(~)l=(g*~ll~,(~)Ifl) i3.22) 

=kNi+ c bwl(4142,1) IL=1 
a.~i(s)=k~~‘(gikiloi~s)Ikigi> (3.17a) 

=k:’ re f-1 ~AY dY gi(~j~i(~)Gi(~~Y;~)~i(y)gi(y> where 

(i= I ,2j. (3.17b) 
Eq. (3 

Inserting Eq. (3.7) for Gi(x,y;tj in the inverse transform of 
Eq. (3.17), we obtain after a tedious integration that 

I A’A(t) 
al(t)=lil~[l-A2A(t)21-L'2 exp P& l+AAct) , 1 (3.18a) 

az,dfd~ (3.23) 

we have used (g,k,lol(sjlgl)=k,,s-‘. Substituting 
8.23) in Eq. (3.19), taking the inverse Laplace trans- 

form, and using the convolution theorem, we see that the 
survival probabilities are given by 

Ql(t)= 1 -QdtL (3.24a) 

Q2(t)=k,,t+F(t)- fu(t-u)Q2(u)du, 
I 

(3.24b) 
0 

u2(t)=k2,,1 -A2A(t)“]-1’2 exp 
I 
p(x2,-x0)’ l~‘~~~tj , I 

(3.18b) 
where A = ho/X measures the relative contribution of solvent 
polarization fluctuations to the total reorganization energy. 

These expressions for ai were derived earlier by u&j 
using a less rigorous argument; here they are obtained unam- 
biguously for inner- and outer-sphere ET reactions in all (De- 
bye and non-Debye) solvents when ligand vibrations also 
contribute to the reorganization energy, i.e., when A # 1. 
Making use of Eqs. (2.8) and (2.24), they can be written as 

where the kernel u(tj=ul(t>+u2(t) and 

J;(t)= 5 I:(u,,,lf,)(g,k, jC,(x,y:f--t’)lu,,*)dt’. 
?I=1 

(3.25) 

F(t) is identically zero when the initial state lfl) is the ther- 
mally equilibrated state [gl). Using Eq. (3.6) it is found that 

F(t)=5 4L.l s f exp[n In A(t’)]dt’, (3.26) 
tl=l 0 

where 

(3.19a) 

a2(t)=k2J 1 -A2A(t)2]-1’2 /?E, 
2AA(t) 

exp 1 l+AA(t) ’ 
(3.19b) 

d,,l=(Un.Ilfl)(gllkllUn,I). (3.27) 

In a Debye solvent, ln A(t’ j = - t'/rL and it follows that 

which displays their dependence on the activation energies 
El and E2 for the forward and back reactions. Since 
kZ,lkl,=exp(pAGoj and E,-E,=AG’, we see that 

u2(t)=ul(t)exp{PAGo[ 1 -AA(t)]I[ 1 +AA(t)]}. 
(3.20) 

rx) dn,rL F(t) = c --$--- [l-exp(-nt/~~)] 
II=1 

(3.28) 

The sum of u,(t) and u,(t) is the kernel u(t) in our 
integral equation solution for the survival probabilities that 
we will derive. Note that as I-W, ui(t)+ki,. Also 
u?_(t) =u,(tj when AGO-0 (e.g., isotopic exchange reac- 
tions like Fef2+Fe*f3=Fe*+2+Fet3, where the asterisk de- 
notes isotopic substitution) and u?(t) =u,(tjexp(pAG’j in 
the wide window limit when A = 0. In this case, the reorga- 
nization energy is due entirely to inner-sphere ligand vibra- 
tions. However, when solvent polarization fluctuations play a 
significant role in electron transfer (i.e., AZO), the ratio of 
u,(t) to u,(t) changes with time when AGO is finite. 

The scalar products of Eqs. (3.14) with Igj) provide the 
transforms of the survival probabilities [see Eq. (2.20)] 

which vanishes for very large and very small values of Q-~. 
This extends the integral equation derived previously6 for ET 
in Debye and non-Debye solvents to reactions in which the 
initial state is not necessarily thermally equilibrated. It leads 
to an additional term F(t) that was absent from our earlier 
discussions of the integraI equation for ET.4-7 

The solution to the integral equation is determined by 
the kernel u(t) in which A and A( tj always occur together as 
a pair. As A ranges from 0 to 1, the primary contribution to 
the reorganization energy changes from inner-sphere ligand 
vibration to outer-sphere solvent polarization effects. The pa- 
rameter A, which is the fractional contribution of the solvent 
polarization fluctuations to the total reorganization energy, 
also acts as a switching function that turns on the effect of 
solvent dynamics characterized by the time correlation func- 
tion A(t). The numerical method described previously’ to 
solve the integral equation when F(t) is zero can be applied 
to Eq. (3.24) as well with trivial modification. 

(3.21a) 

(3.21b) 
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In the next section, we discuss the modification of the 
thermally equilibrated rate constant k, and the kernel due to 
quantum effects on ligand vibration. 
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IV. THE GOLDEN RULE RATE COEFFICIENTS AND 
THE MODIFIED KERNELS IN THE SEMICLASSICAL 
APPROXIMATION 

The rate coefficients defined by Eqs. (2.6) and (2.7j fol- 
low from classical transition state theory and are correct at 
high temperatures. Here we discuss approximations that take 
into account some of the quantum effects that have been 
neglected, leading to a ‘modification of the kernel for the 
rates of electron transfer. 

In the transition state approximation for k,(x), the vibra- 
tional motion of the ligands is treated classically although, as 
noted in the Introduction, the preexponential factor allows 
for quantum mechanical tunneling through the barrier. A 
more satisfactory treatment is to use the golden rule assum- 
ing a finite number of vibrational modes for the ligands.11V12 
The vibrational contributions to the free energy surfaces are 
the sums over these modes and Eqs. (2.1) are replaced by 

V*(q,x)=C a$&2+Vt(x), 
i 

(4.la) 

V2(qrX)=C uit4i-qi,0)2/2+ v*tx)7 
i 

(4. lb) 

where ai=~uiW~, in which ,v+ is the reduced mass and Oi is 
the ligand vibrational frequency. Identifying 4i.a with 
23/i/(,uuio~), where yi is the coupling constant of the ith 
mode between the initial and final states, one finds that Eqs. 
(4.1) correspond to the well-known spin-boson model with 
the vibrational reorganization energy given by 

Xq=C Ui~20/2=C 2$/(piOf)- (4. lc) 
i i 

2-_ 

As seen in Eqs. (2.7) and (2.8), the slow motion of the 
solvent polarization provides an effective free energy gap 
AGO(x) when x is out of equilibrium. The rate coefficients 
for the fast modes can be evaluated by using standard reac- 
tion rate theories, e.g., classical transition state theory, or one 
could include quantum effects by using the golden rule to 
evaluate the rate, treating AGO(X) as a constant. Although 
the rate constant for harmonic potential wells has been dis- 
cussed by a number of authors,‘tVt2 the incorporation of sol- 
vent dynamics presents new difficulties. 

In principle, one can easily write down a general golden 
rule expression with the effective nonequilibrium free energy 
gap given in’ Eq. (2.8cj [see Eqs. (Bl)-(B3)], but it is a 
formidable task to solve the corresponding diffusion-reaction 
equations with several vibrational modes without introducing 
further approximations. Expressions of varying accuracy can 
be realized by using saddle point ap@oximations14 to calcu- 
late electron transfer rate coefficients.‘3*15-‘9 The details are 
discussed in Appendix B and the important results are pre- 
sented in this-section. 

A saddle point approximation obtained by expanding the 
phase integral to second order in t is Eq. (B 18 j of Appendix 
B which leads to a semiclassical rate coefficient” 

k(x) = 

(4.2) 
Here the effective temperature Tt is defined by” 

Pfiiwj 
k,T'=$ F UjCOjqio COth 23 

4 J 

(4.3) 

in which the sum is over all the vibrational modes. This 
incorporates many quantum modes in a compact but approxi- 
mate form and leads to the classical limit, when Tt = T, for 
all AGO(x). Equation (4.2) can be rewritten as 

ki(x)=vi exp[-@AGf(x)] (i=1,2), (4.4a) 

where AGj(x) is defined by Eqs. (2.7) which contain the 
free energy gap AGO(x). For a nonadiabatic’ reaction, the 
preexponential factor in Eq. (4.4a) 

v,:=(J2/n)(ptrr/h,)“2. (4.4b) 

At high temperatures, Eq. (4.4a) reduces to the classical limit 
given in Eq. (2.6). On taking the thermal Boltzmann average 
of k:(x), we find 

k!e=v,D-1’2 exp(-PET) (i=1;2), (4.5) 

where ‘L’~ = v+(/l/~+)“2, E; = (h + AG0)2/(4Dh,), E; 
= (X-AG0j2?(4DX,), and D=ho/h,+Tt/T. This can be 
simplified further by defining 

A+=X,/DX,=A/[A+(l-A)(T+/T)] 

and 

.+= v(A+/A)“~, 

where V= ~*(hJXjl’~. It is then easily shown that 

Ef=Ei(A+/A) (i= 1,2), 

and 

kit,=.+ exp(-PET) (i= 1,2), 

(4.6aj 

(4.6b) 

(4.7) 

(4.8) 

which is similar in form to Eq. (2.23). We see that quantum 
effects of intramolecular ligand vibration influence both the 
exponential and preexponential factors of the thermally 
equilibrated rates. Since Tt Z T, A + 2A, one expects from 
Eq. (4.8) that ki, 2 kI, unless the reaction is barrierless. At 
high temperature, T ‘a-T, and Eq. (4.8) becomes identical to 
Eq. (2.23). 

On repeating our derivation of the integral equation in 
Sec. III using Eq. (4.2) instead of Eq. (2.6) for k,(x), we find, 
after some lengthy analysis, that the kernels given in Eqs. 
(3.19) are now changed to 

ui(t)=ki,( 1-At2A(t)2)-1’2 exp PET ,2f~f~~~) , 1 
(4.9a) 

u&t)=k$,[ 1 -At2A(t)2]-1’2 exp PEl 12~~~~~~) . 1 
(4.9b) 

The modified kernels [Eqs. (4.9)] should be used, instead of 
Eqs. (3.19), when quantum corrections to the thermal equi- 
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librium rate constant are significant but can be treated in the 
semiclassical approximation. The numerical method of solu- 
tion of the integral equation8 remains the same. At high 
temperatures I” -+T, A+-+A, EI+Ei, and the results in 
Sec. V are recovered. Note also that A+--+A as A-+ 1 or 0 
when the quantum effects of ligand vibration on the switch- 
ing functions can be neglected. Their influence on the diffu- 
sion controlled rate k, is discussed in the next section. 

A criticismi7”s of the semiclassical approximation equa- 
tion (4.2) is that it overestimates the rate for symmetrical 
self-exchange reactions, e.g., the ferrous/ferric reaction and 
underestimates the rates in the extreme inverted region. Sid: 
ers and Marcu~‘~(~) studied quantum effects in several ET 
reactions, and it is evident from their comparisons in Table II 
of Ref. 13(b) that the semiclassical approximation is a good 
approximation for some reactions in the normal and weakly 
inverted regimes. In such cases, its transparent form and easy 
manipulation makes it useful in introducing quantum effects 
in the analytic development of a theory and we have used it 
in discussing quantum corrections to the kernels of our inte- 
gral equation for electron transfer. Justification of its appli- 
cation to betaine-30 is discussed in Sec. VI. 

van Duyne and Fischer and Fischer and van Duyne17 
also developed approximations for electron transfer reactions 
with large free energies (i.e., unsymmetrical reactions) by 

I 
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expanding the rate coefficient to second order in t [see- Eq. 
(13) of Ref. 17(b)] around the saddle point. This is similar to 
the semiclassical approximation derived in Appendix B and 
leads to a saddle point approximation for electron transfer 
rates that has been used to discuss ET rates in the inverted 
reg-ion. 

To go beyond the semiclassical approximation, we note 
that a compact saddle-point expression for rate coefficient in 
symmetrical ET systems has been derived by Chandler and 
Bader.” It is accurate to within 20% by comparison with 
computer simulations of the self-exchange ferrous/ferric re- 
action. Saddle point approximations discussed earlier by Bu- 
hks et aLi and Siders and Marcu~‘~ are in less convenient 
form. We discuss the general problem in Appendix B and 
suggest the approximation 

ta=ipfi[ 1 +a(T)AG’(x)lX,]12 (4.10) 

for the stationary phase value of the time at the saddle point 
for symmetrical and unsymmetrical ET reactions. It reduces 
to the well-known to = i@5/2 for symmetrical self-exchange 
reactionsl’ and contains, for other cases, a parameter a(T) 
that approaches one at high temperatures. Elsewhere, a(T) 
must be determined numerically or empirically. e.g., 
a(T)-TITf, where Ti is defined in Eq. (4.3). The rate co- 
efficient which follows from Eq. (4.10) is 

k?(x) = 
~(J2/fi3’2){exp-~AGo(x)[1+a(T)AGo(x)lX9]/2+f(to)} 

Jy do c$( w)cosh( vw)cosech(@w/2)] 1’2 ’ (4.11) 

where 

.Ato)=-(2hrn)/; do ~(W)W-*{tanh(/3Ro/4) 

- [cosh( VW) - l)cosech(pfiw/2)}, (4.12) 

v=a(T)@AG”(x)l(2X,>, and the density of states 4(o) is 
defined in Eq. (B4) of Appendix B. Equation (4.11) reduces 
to the rate coefficient (B12) for symmetrical ET reactions 
discussed by Chandler and Bader” when ~‘0. It leads cor- 
rectly to the classical limit at high temperature. 

V. THE DIFFUSION LIMITED RATE CONSTANT 

Solvation dynamics affects ET reactions in solution 
when the intrinsic rate of barrier crossing is coupled to the 
translational and rotational motions of the solvent molecules. 
It is characterized by the explicit form of A(t), the magni- 
tudes of the different relaxation times, and several other fac- 
tors which will be discussed in this section. 

One expects a strong dependence on A=X,/h which 
represents the relative contribution of the solvent polariza- 
tion fluctuations to the total reorganization energy. As noted 
earlier, A acts like a switching function in the kernel that 
turns on the influence of solvent dynamics on the rate of 
electron transfer. The barrier heights Et and E, that appear 
in the kernels also influence solvent dynamical effects on ET; 

I 

they could be high or low or in between these extremes with 
different consequences for the rates. Quantum effects on 
ligand vibration also modify the kernels, and we expect to 
see this reflected in the way that solvation dynamics control 
the kinetics of electron transfer. 

To analyze these effects, we focus our attention on the 
survival probabilities Q*(t) that are described by a first order 
rate constant at relatively large times even when the overall 
dynamics6 is more complicated. To see this, consider the 
Laplace transform of the integral equation [with F(t) = 0] 
which is 

iZ2(s)=k,~{dIl +a,l(s)+a,ds>l). (5.1) 

The s = 0 limit of as1 (s) in transform space corresponds to 
t--m in real space when ai(t)-+ki, . It is helpful to split by 
writing 

ai(tj=ki,+ki,[af(t)- 11, _ (5.2) 

where ay(t)=ai(t)lk,. It ~OIIOWS from EQs. (3.19) that 

aF(t)=[ l-A”A(t)2]-1’2 exp{2PEiAA(t)l[ 1 -I-AA(t)]}. 
(5.3) 

Note that the barrier height Ei appears only in the exponen- 
tial factor and its intluence decreases when it is low or if A is 
small. 

The Laplace transform of Eq. (5.2) is 
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U.yi(s)=ki,lS+ai(S), (5.4) 

where 

I 

m 
ai(S j =kie e-“‘[a!(t)- l]dt. (5.5) 

0 

In the limit s-+0 limit (i.e., at long timesj, cUi(S) becomes a 
constant Qi, and substitution of Eq. (5.4) into Eq. (5.1 j leads 
to 

Q2(~j=k1~/[~(~+kln+k2n)l, (5.6) 
where 

k[a=ki,/(l+a), (5.7) 
cu=a1+cr2, and 

(Yi=ki@ 
I 

m[ap(t)- I]&. 
0 

(5.8) 

The inverse Laplace transform of Eq. (5.6) shows that the 
sum of k,, and k?, is a first order rate constant for the 
survival probabilities (at long times) 

Q*(t)= 1 -c?2Ct), (5.9a) 

~2(tj=klel!kl,+k2,)exp[l-(kl,+k2LYjtl. (5.9b) 

The reciprocal 

(5.10) 

where k, is given in Eq. (2.23) and 

kid=kielff* (5.11) 

Either k, or kid will dominate the rate if one is much smaller 
than the other. 

Since ki, is known, we focus our attention in what fol- 
lows on kid. The preexponential factor v in the definition of 
ki, appears in the numerator and denominator of Eq. (5.11) 
and cancels to make kid independent of v and the factors that 
detemnne it, e.g., the electronic coupling at the intersection 
of the reactant and product free ‘energy surfaces and tunnel- 
ing through the barrier. Thus 

kid= k;Ja’T 

where 

(5.12) 

k~,=ki,/v=exp(-/3E~), (5.13a) 

and u!=cyIv is the sum of two integrals determined by the 
kernels 

d=kic 
I 

om[u;(t)- l]dt+k;, 
i 

b[ai(t)- I]&. 

(5.13b) 

The rate coefficient kid depends on the solvent 
dyn~cs.7.8,‘9-** We discuss its modulation by changes in 
solvent contributions to the reorganization energy (i.e., by 
A =X,/X), by variations in the barrier heights E, and E,, 
and by the quantum effects discussed earlier in Sec. IV. Al- 
though a and a! can be calculated numerically, we will de- 
rive analytic expressions in two limits that reveal the factors 
controlling them. Our mathematical treatment of low and 

high barrier limits is closely related to our previous discus- 
sion of the kernels at short and long times, respectively,5P6 
but the physical content and interpretation are different. 

When the barriers ure low (Ei-0) or A is small, it 
follows from Eq. (5.2) that a~(t)~[l-A2A(t)2]-1’2. In- 
serting this in Eq. (5.8) and expanding in powers of A(t), we 
have6 

~i=kieFA(~) (i=1,2), 

where 

(5.14) 

(5.15) 

and (ra”)=JrA(t)2ndt. Substituting Eq. (5.13) in Eq. 
(5.1 l), we see that 

kid=kiel[(k*e+k*ejFA(7j] (i=1,2), (5.16) 

where we recall that k,,/k2,=exp( - PAGO). This implies 
that the rate constants k, can be eliminated from the expres- 
sion for kid in the low barrier limit. In Debye solvents 
F, ( 7) = rLfA and6 

f.4= it A2n2n! rz=, (2n!!j22n ’ (5.17) 

while in non-Debye solvents, we use an approximation for 
FA(r) by replacing rr. by the average relaxation time 

(T)= lomA(t (5.18) 

so that E;;1(r) -( r)fA. When A(t) is the sum of two expo- 
nentials, (T)=A~T~+A~T~. In this case, FA(r) can be cal- 
culated as an infinite sum.= It follows from our discussion 
that in the low barrier limit 

(5.19) 

When the barriers are high, the main contribution to the 
integral in Eq. (5.8) comes from the integrand at short times 
when A(t) = I- t/7init, where ~~1 is the initial relaxation 
time. For example, 1/7i”it=A 1/71 +A1/72 when 
A(t)=A, exp(-t/r1)+A2 exp(-t/r2). Assuming that 
A # 0, we approximate exp[2PAEiA(t)] - 1 in the integrand 
of Eq. (5.8) by exp(2PAEi)exp(- t/7init) and find after inte- 
gration that 

~‘=7init(Y*/11+S]+Y*/11-Sl), 

in which 6=AG”IX and 

(5.20) 

yi=(W/PX)1’2[( 1 +A)/A3’2]exp[yi( I-A)][1 -erf(Jyi)], 
(5.21) 

where Yi=PEi(l -A)/[A( 1 +A)] for i= 1,2. 
In nonadiabatic ET reactions, v= (2 7-rJ2/hj (PI4 vX j l/2 

and one usually. defines 

ki,( nonad) = (@/4 7~) 1’2 exp( - PEi) , (5.22) 

so that ai(nonad) = (ph/47r)“*cui and 

yi(nonad)=[(l+A)/(2A3’2)]exp[yi(l-Aj][1-erf(Jyi)]. 

(5.23) 
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FIG. 1. ,fa vs A in the low barrier approximation for Tt= T and fl=4T. 

To take account of quantum effects on high frequency 
ligand vibrations, we need to substitute the modified kernels 
a!(t), discussed in Sec. IV, for ai in deriving the rate 
constants defined in Eqs. (5.10) and (5.11). Calling these 
kt and k$, respectively, where kle is defined in Eq. (4.4), 
we have kitd = kiJai, where ai = ai + CY~, 

ai = kTe 
s 

om[ajo(t)- l]dt 

and u!‘(t) = af(t)lkf . 
Fir low bders, L$ = kfeFJ( T), where FA( 7) is defined 

by an equation analogous to Eq. (5.14), with A replaced-by 
A+. A is related to Ar by Eq. (4.6). In Debye solvents 
F:( 7) = &T~, where fi is also given by Eq. (5.16) with A 
occurring instead of A’. A similar relation holds for FJ( 7) in 
non-Debye solvents except that the average (7) should be 
substituted for rL . Figure 1 shows a plot of fA [or fl] as a 
function of A when Tt = T and Ti=4T. 

The quantum corrections to the rate constants for ET at 
high barriers are readily obtained. Defining k!: = kie/ut 
= exp! - PE!), we find that 

k,t,=k;&y~‘, 

with cr” = ai’ + LYE’ , 

(5.25) 

,t’=,i~t(Y:lll+61+y~/ll-61), 

in which 

(5.26) 

$=(AdAtph)“*[( 1 +At)/At3”]exp[yI( 1 -At)] 

X[1-erf(ot)l (5.27) 

and y! = pEI( 1 - At)l[At( 1 + A?)]. These equations are 
analogous to Eqs. (5.20) and (5.21) except that At and yi 
occur instead of A and yi, respectively, and an additional 
factor (A/A +) 1’2 appears in E$. (5.27). Defining 
kic’(nonadiab) =(@/4n) ‘I2 exp( -pEf), the corresponding 
expression for nonadiabatic ET reactions is 

T=298K 
Tt.=T 1.5 

0.0 0.1 0.2 0.3 0.4 0.5 
A 

FIG. 2. I/& vs A at 298 K in the high barrier approximation when the 
reorganization energy @=35 and 6=AG”IX= - I .O, - 1.1, and -1.5, re- 
spectively. The dotted lines are l/o? vs A in which quantum effects of 
ligand vibrations are taken into account in the calculations with Ti= 1.5T. 

Xexp[yi( 1 -A+)][ 1 -erf(Jyt)]. (5.28) 

Clearly the influence of solvent dynamics on the diffu- 
sion controlled rate k, is determined not only by the relax- 
ation times, but also by the switching functions A or At. 
With few exceptions,‘-’ previous discussions have ignored 
this since they usually treated electron transfer reactions in 
the narrow window limit when A = 1. 

Figure 2 illustrates how l/a’ changes with A for typical 
nonadiabatic reactions when LY’ is calculated numerically 
from Eq. (5.13) or Eq. (5.24). As expected, quantum effects 
on I/U and kid are more pronounced for low barriers. We 
have already seen that the barrier height modulates the influ- 
ence of solvation dynamics on ET rates in solvents with mul- 
tiple relaxation times. When these relaxation times are 
equally effective in controlling the solvent dynamics [e.g., 
the Ai coefficients in Eq. (6.1) are the same], we infer from 
Eqsr (5.20) and (5.26) that the faster solvent relaxation mode 
(smaller 7i), which dominates qtii,, has a greater effect on the 
rate of ET reactions with high barriers. Similarly, Eq. (5.13) 
shows that the slower relaxation (larger rij component, 
which determines (T), has a more pronounced effect on the 
ET rate when the barrier height is low. 

VI. AN ILLUSTRATION-ELECTRON TRANSFER 
RATES OF BETAINESO IN GTA 

We use the results derived in the previous section to 
analyze the ET kinetics of’betaine-30 in glycerol triacetate 
(GTA). Walker et a1.9’d) measured the rates of this reaction 
from 228 to 318 K and interpreted their data using a hybrid 
of the Sumi-Marcus and Bixon-Jortner models,24 in which 
they invoked a high frequency vibrational mode and multiple 
reaction channels with different activation energies to vibra- 
tionally excited product states. We have also discussed such 
a model” though not directly in connection with these experi- 
ments. Section IV of this paper discusses corrections to our 
integral equation due to high frequency ligand vibrational 
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modes. We will show that the Sumi-Marcus model explains 
the ET kinetics of betaine-30 in GTA assuming that the dif- 
fusion limited rate is modulated by an appreciable reorgani- 
zation energy contribution from intramolecular vibration 
modes. The parameter A = ha/X, which is the relative contri- 
bution of the solvent fluctuations to the total reorganization 
energy, is thus less than one and is strongly temperature de- 
pendent. 

The standard free energy change of this reaction 
AGO-10 609 cm-’ at 303 K and an Arrhenius plot sug- 
gests a small activation energy Elm472 cm-’ for the for- 
ward reaction. Inserting this in Eq. (2.24a). we calculate 
X-6979 cm-’ for the total reorganization energy, or PA-34 
at T= 3 03 K (kT= 2 10 cm-‘) in the inverted regime where 
this reaction occurs. The free energy change is =- 1.3 eV, 
and the reorganization energy hm0.8 eV. 

Walker et al. estimate the matrix coupling element 
J-2500 cm-’ in their hybrid model. Using this, we find 
k,,-0.2X 1Or5 s-l at 303 K in the nonadiabatic limit [see 
Eq. (2.23)]. It is much larger than their estimate of the first 
order rate constant from the Sumi-Marcus theory, and it is 
also larger than the observed rate constant k, (ym 0.3 4 X 10 I2 
s-’ at this temperature. This is consistent with an ET rate 
that is solvent controlled [see Eq. (5.10)]. Although we have 
calculated k,, in the nonadiabatic limit, its exact value is 
unimportant as long as it is much greater than the observed 
rate when the reaction becomes solvent controlled. We next 
determine the diffusion controlled rate coefficient kid using 
the data provided in the paper of Walker et CL’(~) 

The solvent dynamics in GTA are characterized by an 
average relaxation time of 40 ps at 303 K. In our low barrier 
approximation (E i = 0 and S= - 1 .O) 

kid= 1/((+f‘4), (6.1) 

and we find a lower limit of 4.16X 10” s-’ for kid assuming 
A- 1.0 when f,=O.63. 4*6 This is smaller than the observed 
rate. However, fA changes with A, as seen in Fig. 1, and kid 
increases as A decreases below one. The accuracy of our low 
barrier approximation also improves as A decreases, since A 
appears with El in the argument of the exponential in the 
kernel. We find that the diffusion limited rate k,, is equal to 
the observed rate at 303 K, in this approximation, when 
f,=-i).O74. This corresponds to A-0.5. 

The same argument can be used to analyze the kinetic 
dataptd) for this reaction at all temperatures (318-228 K) at 
which ET rates were measured. The average relaxation time 
(73 for the solvent GTA changes from a few picoseconds to 
several hundred or thousand times this-number over this tem- 
perature range. Table I summarizes the experimental results 
and other parameters calculated from Eq. (2.23) and the ac- 
tivation energy. Since the ET reaction is solvent controlled, 
we expect kla= kid and fA is easily calculated at different 
temperatures Tfrom Eq. (6.1) and the experimental values of 
{r). The corresponding values of A inferred from Eq. (5.6) 
and fA are presented in columns two and three of Table II. 

For this system, the calculations of ET rates remain es- 
sentially unaltered when quantum effects of ligand vibrations 
on the rates are taken into account using the semiclassical 
approximation. fA and A now correspond to fi and At, re- 

TABLE I. Parameters for ET kinetics of betaine-30 in triacetin (GTA). 

T(K)B {s-)(p~~ ke+,obs(p~C1) AG’(cm-‘)a h[cm “) ~5 4, 

228 7x 106 0.18 - 10 993 7284 - 1.509 0.186 
263 410 0.22 -10 711 7060 - 1.517 0.233 
293 125 0.290 -10660 7020 -1.518 0.270 
303 40 0.34 - 10 609 6919 - 1.520 0.280 
308 28 0.36 -10.583 6958 1.520 0.285 
313 18 0.40 - 10 557 6938 -- 1.521 0.290 
318 12 0.38 - 10 532 6918 - 1.522 0.295 

‘Data from Ref. 9(d). A calculated from F$. (2.25a) in the inverted region 
and k;, = (/N4rr)exp( - PEt) with Et =472 cm-‘. 

spectively, as they are listed in the second and third columns 
of Table II. Following Kjaer and Ulstrup’s discussion of 
betaine-20,26 we assume a single frequency of FJ 1600 cm- ’ 
which corresponds to Ti- 1.1 T at 293 K. This corresponds 
to a small quantum correction. Inverting Eq. (4.6), we have A 
as a function of At and T’IT, 

A=At(T+/T)/[ 1 +A+(T?lT- l)], (6.2) 

in which the relationship between Ti and T [see Eq. (4.3)] is 
determined by the high frequency ligand vibrational modes. 
Our estimates of A and X0, using the exact Tt/T. calculated 
from Eq. (4.3), are displayed in columns four and five of 
Table II. 

The caIculation is easily repeated for a finite barrier 
when 
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fL( 7-j= J$O(t) 7 1 ]dt, 

which follows from Eq. (5.24). Numerical integration of Eq. 
(6.3) with Eg = 472 cm-’ determines At anda recorded in 
columns six and seven of Table II. They are slightly smaller 
than the values obtained in the zero barrier limit confirming 
our assumption that an activation energy of 472 cm-’ has a 
relatively small effect on A. The corresponding solvent reor- 
ganization energies X0 are listed in column eight of Table III. 

The accuracy of the semiclassical approximation for the 
rate coefficient for ET in the betaine-30 system can be deter- 
mined by calculating the error in the saddle point to from the 
approximate and exact expressions, Eqs. (B22) and (B8), re- 
spectively, the second by iteration. At 303 K, the error in to 
is 14% which corresponds to an error of 7% in the semiclas- 

TABLE II. Quantum and barrier height corrections for ET kinetics of 
hetaine-30 in ttiacetin (GTA). 

Et=0 El = 472cm-’ 

T(K)n j; A+ A Xo(cm -‘) At A Xo(cm-‘) 

228 ==o.oo 0.018 0.022 160 
263 0.011 0.208 0.232 1638 
293 0,028 0.325 0.350 2457 
303 0.074 0.514 0.542 3782 
308 0.099 0.585 0.612 4258 
313 0.139 0.672 0.695 4822 
318 0.219 0.795 0.813 5624 

“J$ vs At is identical to fA vs A at p= T, 

0.002 0.002 15 
0.160 0.222 1567 
0.290 0.329 2310 
0.488 0.516 3601 
0.560 0.588 4091 
0.650 0.675 4683 
0.780 0.799 5527 
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f a 
0.2 

0.1 

0.0 

FIG. 3. fat vs A' inferred from the ET rates of betaine-30 in glycerol 
triacetate (GTA) between 228 and 318 K  assuming that the reaction is con- 
trolled by the solvent and intramolecular ligand vibrations. The low barrier 
approximation is assumed. 

sical approximation for the rate coefficient. This is small and 
justifies our use of this approximation for the rate coefficient. 

The increase of fL with temperature implies that A also 
does the same. The hybrid model of Walker et CZZ.“~) on the 
other hand predicts a nearly constant value of A 90.4 de- 
duced from Table VI of their paper. The temperature depen- 
dence of A in our theory partly reflects the T dependence of 
the Peker factor that appears in expressions for the solvent 
reorganization energy X0 .’ Figure 3 shows a plot of fA t vs A + 
and Fig. 4 shows that A, (column eight of Table II) increases 
with temperature in this range. In contrast to this, Walker 
et al. report solvent reorganization energies (ACl,sOlv in their 
notation), decreasing with increasing temperature according 
to their model. This is the opposite of what we find and 
seems intuitively less obvious. 

In summary, our theoretical explanation of ET of 
betaine-30 in the solvent GTA characterizes it as a low bar- 
rier reaction in which kinetic control by intramolecular vi- 
bration at low temperatures shifts to control by solvent dy- 
namics as the temperature rises (see Fig. 4). Quantum 
corrections due to high frequency vibrational modes make a 
small contribution to the reaction rate and the dynamics of 
the solvent modulates the rate at all temperatures above 
freezing. These conclusions are qualitatively in accord with 
those of Walker et al. g(d) although our theoretical treatment is 
different. 

VII. DETAILED SOLVENT DYNAMICS AND THE 
SOLUTIONS TO THE INTEGRAL EQUATION 

In this section, we present the numerical solutions to the 
integral equations for ET using information on solvent dy- 
namics from different sources. Our objective is to determine 
how sensitive the survival probabilities in ET reactions are to 
details of the solvent dynamics such as the oscillations in the 
times correlation functions s(t) for the free energy of solva- 
tion. S(t) obtained from TDFS experiments, computer simu- 

0 ? 
220 240 280 280 300 

TK 

FIG. 4. The solvent contribution to the reorganization energy A,, as a func- 
tion of T calculated from the experimental data for ET of betaine-30 in GTA. 
Points correspond to El=0 and 472 cm-.‘, respectively (see Table II). 

lation, and theoretical calculations for the same solvent differ 
in detail and it is useful to know what effect these differences 
have on the rates of ET reactions. 

TDFS experiments in Barbara’s laboratory’ have shown 
that S(t) for many solvents can be represented as the sum of 
two exponentials 

S(t)=A, exp(-t/T1)+A2 exp(-t/T2), (-7.1) 

where A 1 +A2= 1 and the relaxation times ~~ and 7-2 are 
usually of the order of 0.2-4 ps. Exceptions are methanol 
and n-propanol, where (TV ,T~) is approximately (1.16,9.57) 
and (14.0,40.0) ps, respectively. The ratio of the relaxation 
times (larger to smaller) is usually not greater than 5, al- 
though there are notable exceptions, e.g., propylene carbon- 
ate and methanol. The solvation parameters derived from 
TDFS data that characterize Eq. (6.1) are reproduced from 
Ref. 6 in Table III. 

Instrument limitations and probe insensitivity may have 
masked some of the fine structure of solvation dynamics 
measured in earlier TDFS experiments. Solvation dynamics 
should also be, to some extent, probe dependent; changing, 

TABLE III. Experimental solvation parameters at 298 Kn S(t) 
=A, exp(-tlr,)+A,exp(-t/r?). 

Solvent q(ps) d~s) A, A2 .rrff(ps) 

Acetoneb 0.31 0.99 0.47 0.53 0.67 
Acetonitrile 0.27 1.05 0.73 0.27 0.48 
Dimethylsulfoxide 0.33 2.3 0.57 0.43 1.2 
Propylenecarbonate 0.43 4.1 0.46 0.54 2.4 
Methanol 1.16 9.57 0.40 0.60 6.2 
n-propanol 14.0 40.0 0.30 0.70 32.2 
WaterC 0.16 1.2 0.33 0.67 0.86 

“Entries from W. Jarzeba et al. Chem. Phys. 152, 57 (1991). 
‘Acetone is also well represented by a single exponential t ime decay of S(t) 
with a relaxation time of 0.70 ps. 

‘For water, TDFS experiments on a femtosecond time scale [R. Jiminez 
et aZ., Nature 369,471 (1994)] have been fitted to EQ. (7.2) withA,=0.45, 
0,=38.5 ps-‘, A,=0.20, ~,=0.126 ps, A,=0.35, and q=O.88 ps. 
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FIG. 5. s(t) vs t in picoseconds for acetonitrile (a) biexponential equation 
(7.1) fitted to TDFS experiment (Ref. 9) (upper curve) and (b) theoretical 
calculation of Ranieri and Friedman (Ref. 34) using two center Lennard- 
Jones model with charges for acetonitrile. 

for instance, with the size, shape, and charge distribution of 
the probe. Computer simulations10327-31 and theoretical 
calculations32-36 provide additional information, and it ap- 
pears that in many instances, s(t) shows a fast Gaussian 
response, on a femtosecond time scale, followed by a slower 
decay for several picoseconds that is modulated by oscilla- 
tory behavior. These features are seen in the S(t) simulations 
of SPC water at 25 “C! by Kumar and Tembe3’ and Bader and 
Chandler.” The fast inertial response of the solvent has been 
observed recently in TDFS experiments in water carried out 
in Fleming’s laboratory’O(c)~‘O~) and its main effect on the 
solvent dynamics is included by modifying Eq. (7.1) to read 

S(t)=A, exp(-oit2/2)i-At exp(-t/rl)+A? 

Xexp(-t/r2), (7.2) 

where A, and wg are parameters representing the inertial 
response. ‘The parameters for water are A, = 0.45, cog = 3 8.5 
ps-‘3 A1=0.20, r,-0.126 ps, A,=0.35, and 7.=0.88 
Ps. “(8) The extent to which the details of solvent dynamics 
affect ET rates depends on many factors, e.g., the barrier 
height, the intrinsic rate of barrier crossing, and the time 
scales of solvent dynamics. We will briefly explore some of 
them for a model ET reaction in acetonitrile. 

Figure 5 compares the theoretical calculations of S(t) 
for acetonitrile by Ranier-i and Friedman34 using a two-center 
Lennard-Jones model for the solvent and the biexponential 
form of Eq. (7.1) which does not show any of the fine struc- 
ture or the initial fast Gaussian response found in the calcu- 
lated S(t). The results of some of our integral equation cal- 
culations of the survival probabilities for model ET reactions 
in water, propylene carbonate, and n-propanol using Eq. 
(7.1) for S(t) have been discussed elsewhere.6 The input 
parameters are A(t) =S( t), the total reorganization energy 
,f?A, the fraction of this A = X,/X due to solvent polarization 
fluctuations, and the intrinsic rate of barrier crossing given 
by </3ko, where k. is defined by v= (/LlAI27r)] '12ko, in 
which T, is the preexponential factor of the rate constant. It 

I I 
V.” 

0.0 0:2 0:4 oh 018 1:o 
t PS 

FIG. 6. Survival probabilitbs Qt(t) of a reversible and symmetrical model 
electron transfer reaction in acetonitrile using s(t) from (a) Eq. (7.1) fitted 
to TDFS data [Ref. 9(a)] or (b) from theory (Ref. 34) as input in the integral 
equation (3.24b) for ET with F(t) =O.O. The model parameters are 
AG’LO.0, A=0.997 (near narrow window limit), U= 15X 10” SC’ (i.e., 
fik, = 4.0 X lOI s-t), and @X=1 or 7. The solid lines were calculated 
using S(t) from theory (Ref. 34) and the remainder using the biexponential 
form of Fq. (7.1) for S(t) (see Fig. 5). 

was seen that in many cases, the survival probabilities of the 
reactants in an ET reaction are not simple first order decays. 
It was also found that the use of an average relaxation time 
with a single exponential time dependence for S(t) typical of 
Debye solvents leads to incorrect ET rates in sluggish sol- 
vents, like propylene carbonate, that have (see Table III) re- 
laxation times differing by a factor of about 10. 

The integral equation for ET is just as easily solved us- 
ing the more detailed representations of S(t) that have been 
suggested by recent TDFS measurements, computer simula- 
tion, and theory. Figure 6 shows our calculations of the sur- 
vival probabilities for symmetrical model ET reactions with 
(AG’=O.O) in acetonitrile with A=0.997 and 
~=15XlO’~s-~ (Le., ~/3ko=4.0X10’2~-1)usingS(t) (i) 
from TDFS experiments and (ii) from the model calculations 
by Ranieri et al.34 The solutions to the integral equation with 
the reorganization energies pL= 1 and 7, respectively, were 
obtained by the numerical method.outIined in Ref. 7 assum- 
ing a thermally equilibrated initial state [i.e., F(t) = 01. The 
two S(t)‘s are also shown in Fig. 6. It appears that in this 
particular case, the details of the solvent dynamics have only 
a small effect on the survival probabilities. 

However, our discussion in Sec. VI shows that the initial 
relaxation time 7init has a strong effect on the rates of ET in 
reactions with a moderate to high barriers when the rate of 
barrier crossing is comparable to this time. In aqueous sys- 
tems, 7init should be identified with the characteristic time for 
me ultrafast Gaussian response of S(t) . The rate coefficients 
and survival probabilities of ET reactions in this and other 
solvents can be calculated using the theoretical and numeri- 
cal methods discussed this paper. 

Vii. DMXJSSION AND CONCLUSIONS 
We have derived an integral equation for reversible elec- 

tron transfer in Debye and non-Debye solvents using a 
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Green’s function technique and a decoupling approximation 
for the reaction diffusion equations that describe the kinetics 
of these reactions. Although the decoupling of the differen- 
tial equations is an approximation, it is exact in several 
limits3-s including the outer-sphere electron transfer (or nar- 
row window) limit. Since the ligand vibrational contributions 
to the reorganization energy of ET reactions are not very 
large, it is also expected to be reasonably accurate in most 
cases of practical interest. 

The discussion also extends our previous work in several 
ways (a) by considering ET from an initial state that is not in 
thermal, equilibrium with its surroundings as in many experi- 
ments initiated by laser excitation; (b) by incorporating 
quantum mechanical corrections to the classical high tem- 
perature transition state rate coefficients used in our previous 
study. The integral equation is easily solved on a personal 
computer, and is useful in the interpretation of ET experi- 
ments in which solvent dynamics and the relative contribu- 
tions of ligand vibration and solvent polarization fluctuations 
to the rates of ET reactions play important roles. It is found 
that in solvents with more than one relaxation time, the faster 
component of solvent relaxation [smaller T) controls the rate 
of ET reactions with a high barrier, while the slower relax- 
ation component (larger TV) controls the ET rate when the 
barrier height is low and the reaction is solvent controlled. 
Quantum corrections to these effects are more pronounced 
when the ET barriers are low. We have derived a compact 
saddle point approximation for the rate coefficient of elec- 
tron transfer reactions that reduces to the expression obtained 
by Chandler and Bader’9.39 
reactions when A G”(X) = 0. 

for symmetrical self-exchange 

The ET kinetics of betaine-30 in glycerol triacetate 
(GTA) over a 100” temperature range is analyzed by treating 
it as a low barrier solvent-controlled reaction in which mo- 
lecular vibrations and quantum effects contributing the reor- 
ganization energy and the overall rate. Interestingly, a strong 
coupling between molecular vibrations and ET in photosyn- 
thesis has also been suggested recently.38 

The detailed fine structure of the solvent dynamics in 
acetonitrile is only weakly reflected in the electron transfer 
rates of a model system that was studied. However, as dis- 
cussed in this paper, the initial ultrafast inertial response of 
the solvation dynamics in solvents like water will modulate 
the kinetics of moderate to high barrier ET reactions and 
rates of these reactions can also be calculated by the methods 
presented in this paper. Related work on electron transfer 
reactions with bond breaking is discussed elsewhere.37 
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APPENDIX A: OPERATOR SOLUTION FOR ET IN 
DEBYE SOLVENTS 

Consider the case where D(t) is time independent as in 
Debye solvents. The Laplace transform of Eq. (3.1) leads to 

(s+Hi)Gi(x,y;s)=S(x-y). iAl) 

Multiplication by (s + Hi) - ’ followed by integration over v 
leads to 

Oi(Sj= d.y Gi(X*y;S)=(S+Hi)-l. &9 

In the general case, when D(t) is time dependent, an effec- 
tive operator HTff can be defined by replacing Hi by HP’, 
i.e., 

oi(s)=(s+H;y. 643) 

Returning to ET in Debye solvents, it follows from Eq. 
(3.16) that 

C=(gl~lI(~+H,j-'lf,)~[~+~,,(~)+~,2(~)1 i A4 
and 

U,i(s)=ki,‘(gikil(s+Hi)-‘lkigi) (A-9 

=k,‘$ is+E,)-lI(U,,ilkigi)lZ (i=l,2) 

(A@ 
and Iu~,~) are the eigenfunctions of Hi with IUe,i)= Igi), the 
ground state eigenfunction. Equation (A6) follows from Eq. 
(A5) on using the properties of the Hermitian operator Hi; 
the details are in Ref. 4. The inverse transform of Eq. (A6) is 
an infinite sum of exponentials that. in closed from,“-6 is Eq. 
(3.18) with A(t>=exp(-t/T,,). 

Expanding If,) in th e set of eigenfunctions of Hi (Refs. 
5-7) and inserting this in the expression for C, we find 

where d,,, is defined in Eq. (3.27). Multiplying by 
] 1 + a,*(s) + aX2(s)], using the convolution theorem, we 
find the solution given in Eq. (3.24), where F(t) is defined in 
Eq. (3.28). This confirms that our integral equation solution 
for ET in any solvent reduces to the correct result for ET in 
Debye solvents. 

APPENDIX B: SADDLE POINT APPROXIMATIONS OF 
THE GOLDEN RULE RATE CONSTANT 

The golden rule rate coefficient for a harmonic oscillator 
bath is well known”*39”0 and can be expressed as 

where 

dt eAct), iB1) 
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iAG’(x)t 
A(t)= fi +JYt> (J32) 

iAGO o= h 29 +c --% 
j hPjwj 

and 

f(t)=C 2’ co* F (cos wit- l)+i sin ojt . 1 
Pfi@, X -sin wjto COth - * 

( 2 
+Z COS Wjto 9 

1 
038) 

jzjiJq 

033) 
Generally, the saddle point cannot be determined analytically 
except in special situations discussed below. 

In Eq. (B2), AC”(x) is the free energy gap and rj is the 
coupling constant of mode j between the initial and final 
states. It is related to 47 and the vibrational reorganization 
energy by Eq. (4.1~). - 

Defining the density of stateslg 

(B4) 

(a) AG”(x)=O. If only one mode is involved, the 
saddle point can be determined exactly. It follows from Eq. 
038) 13,1&K’ hat 

t,=i/?hl2. (B9) 

If two or more modes are involved, no analytic solution is 
possible unless we assume that each mode satisfies the con- 
dition (B8) independently when Bq. (B9) obtains, and one 
finds we see that 

j=(t)=(2I~fi)j-~~ dw ~(w)o-~ 

and 

(COS Ojt- I )+i sin Ojt 1 
X4=~ 2y~l(~iw:)=(2/rr) 

The saddle point approximation’4 to Eq. iBlj is 

k*(x) = $ 

2 

AitO)=-C 3 tXlh(@iij/4) 
j 

iW = -(2/m5)~om do q5(w)oF2 tanh(/?fiw/4) 

(B 10) 

036) 
and 

]A”(to)l=C 2 cosech(/?htij/2) 
j J j 

037) 

where A”(t) =d2A(t)ldt2 and to is the saddle point. At this 
point, A’(to)=O and it follows from (B2) that 

=(2/5-d) 
I 

co do 4(w)cosech(@o/2). (Bll) 
0 

Substitution of Eqs. (BlOj and (Bll) in Eq. (B4) leads to 

k?(x) = 
rr(J2/R3’2)exp[ - (2/&)JF dw qb( w)K2 tanh(@?w/4)] 

[Jz do r$(o)cosech(@50/2)]“2 

for the rate coefficient obtained earlier by Chandler’9.38 and 
Bader et al. [Eq. (4.4) of Ref. 19(a)]. It is known to be ac- 
curate for ferrous/ferric system by comparison with path in- 
tegral simulations of the rate.” 

To obtain the classical limit at high temperature 
( pfi O/Q 1) , expand the hyperbolic functions cash x= I, 
sinbx=x, and tanh x~x, when Eqs. (BlO) and (Bl I) be- 
come 

A(ro,=-$F 
2Yf _ Pi, 

y---, 
1 /.Lj”j 4 

(B13) 

2Yj _ 2x, 
IA”!to)i=& F a-- pa29 0314) 

J 

respectively. Substitution in Eq. (B7) leads to 

(B12) 

I 

k(x) = zig g&q ,-&‘/4, (B 15) 

which can also be obtained directly from Eq. (B12) by re- 
taining only the leading term in the expansions of each hy- 
perbolic function. This is the correct classical limit of Eq. 
(Bl) when AG”(xj=O. However, use of (B9) in Eq. (B2) 
and (B4) when AC’(x) # 0 leads instead to 

2%-J’ 
k(x) = h exp- 

[AG”(x)+X,/4] 
kT I 

0316) 

at high temperatures. This is inconsistent with the classical 
result given below in Eq. (B20) with Tt=T. Therefore, al- 
though F!q. (B9) works well for the symmetric ferrous/ferric 
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iterative solution of Eq. (B8j for the saddle point condition. 
At high temperatures, a(T)=+ 1 when Eq. (B23) becomes 
identical to the initial guess suggested by Buks et ~1.‘~ and 
Siders and Marcus’* as the starting point for iteration. 
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system,” it is not useful when the free energy gap is not zero 
as pointed out earlier by several others.13,18,39 

(b) AGO(x) # 0. The saddle point in this case cannot be 
determined exactly in simple algebraic form even for a single 
mode. To obtain a compact approximate expression, the 
methods provided in Refs. 1.5 and 16 are quite attractive. At 
not too low a temperature or when the curvature close to the 
saddle point is fairly steep, expansion of Eq. (B3) to second 
order in t (Refs. 15 and 16) leads to 

iAG’(x)t where 
A(t)= n 

Introducing the approximation (B23) in Eqs. (B2) and 
(B5), we find 

iAG”(x)to 
Aito)= h +.f(to), 

f(toj=-(2/d) 
I 

m dw C#+)O-~[tanh(/3fi0/4) 
0 

o?t2 pfiw. 
- -$-- coth-1 

2 (Bl7) 

The saddle point approximation, which now includes all the and 

modes, is then easily obtained as 

to=i[AGo(xj+h,]lD,, 0318) 
where 

~A”(to)~=(21rrR)~om do 4( o)cosh( vW)cosech(ph 012), 

where v=-((it0+/?Zi12)=a(T)~~AG0(x)l(2X,). The 
saddle point approximation for the rate coefficient which fol- 
lows from Eq. (B7) is Eq. (4.11). It reduces to the rate coef- 
ficient (B 12) for symmetrical ET reactions discussed in Refs. 
19 and 39 when A Go(x) = 0. The high temperature limit is 
attained by retaining just the leading term in the expansions 
of the hyperbolic functions in Eq. (4.11) when one gets Eq. 
(B20) with Tt= T. 

Dq=c 2+ - COth(PfiOj/2). 
j Pjwj 

(B 19) 

Setting t= to in Eq. (B17) and its second derivative, one 
obtains the rate coefficient 

k?(x) = 2.g .JZ exp[ I [AGJ;;*~d2] 

0320) 
from Eq. (B7), in which the effective temperature Tt is de- 
fined by 

k,Tt=*“z -& __ 

xq j Pj"j 
coth phwj 2 ~. 0321) 

Equation (B20) is a semiclassical approximation”(a)*‘5.‘6 
which contains quantum corrections to the rate coefficient. It 
leads to the correct classical limit when Tt=T. van Duyne 
and Fischer, and Fischer and Van Duyner7 also expanded the 
rate coefficient to second order in t [see Eq. (13) of Ref. 
17(b)] around the saddle point to obtain a compact saddle 
point approximation for electron transfer rate. 

To go beyond the semiclassical expression and improve 
on Eq. (BlX), we first note that it can be rewritten as 

to=&[ 1 +AG”(x)lX,]/2, 0322) 

where ,&= ll(k,T?). When AG”(x)=O, Eq. (B22) agrees 
with Eq. (B9), only in the high temperature limit. This ex- 
plains why the semiclassical approximation (B20) for the 
rate is less accurate for symmetric systems (e.g., Fe+2/Fe+3) 
than it is for some unsymmetric systems.13 It also suggests 
an interpolation formula 

to= i@Z[ 1+ a( T)AG’(x)lX,]/2 (B23j 

for the saddle points of symmetric and unsymmetric systems. 
In Eq. (B23), the temperature-dependent parameter 
a(T)=P+IP;Which -+l as T--too and reduces-to Eq. (B9) 
when AG’(xj=O. For unsymmetrical systems 
[AGO(x) # 01, u(T) can be calculated more accurately by 

(~24) 

-[cosh( pm) - 1 ]cosech(@%w/21] iB=) 

@26) 
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