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The sticky electrolyte model in a dipolar solvent is studied in this paper. A detailed separation

of the Ornstein—-Zernike (OZ) equations and their solution in the mean spherical (MS)
approximation for binding (or stickiness) at L = o are given. The results derived earlier by
Adelman and Deutch, Blum ez al. and by Héye et al. in this approximation are reproduced
when the stickiness is switched off. Also when the density of the solvent goes to zero, the
results reduce to those of the sticky electrolyte model (SEM) in a continuum solvent. It is
found that the PY/MS approximation gives negative solutions for the association parameter A,
while the HNC/MS approximation works in a narrow interval of the sticky potential well
depth €, between the positive and negative ions. As expected, the ion association increases
when sticky potential well becomes deeper, but the dipole moment of the solvent is found to
have a strong screening effect on this association. The study of the radial distribution functions
of this system shows that the probability of a free ion appearing near a counter ion is greatly
decreased when binding occurs between the oppositely charged ions at the contact; the
opposite happens for ions of the same sign. The absolute value of the ion solvation energy
becomes smaller as the electrolyte concentration increases and when stickiness between

oppositely charged ions is introduced.

I. INTRODUCTION

The sticky electrolyte model (SEM) first discussed by
Lee, Rasaiah, and Cummings, has been studied in a series of
papers.’~ Recently this model has been extended to noncon-
tinuous solvent media by us® (hard sphere solvent) and by
Wei and Blum® (dipolar solvent). In this model, a delta
function is introduced in the interaction between oppositely
charged ions in the range O < <o, where ¢ is the diameter of
the ions. In this way, ion association in a weak acid is mim-
icked and the extent of this association can be calculated.
The model is a modification of the restricted primitive model
(RPM), which has been studied, in a dipolar solvent, by a
number of authors.”!? The Hamiltonians for the SEM and
the RPM, in a given solvent, are different only inside the
hard core, outside the range 7> o, the Hamiltonians for the
two models are the same. When the stickiness is switched off
in the SEM, all the results of the RPM should be recovered.
This serves as a useful check on the solutions of the SEM,
particularly when they can be obtained analytically as in the
mean spherical approximation (MSA ) which is used in this
paper.

In the previous paper,’ we studied solvent effects on ion
association in the SEM with a hard sphere solvent. It was
found that the ion association was considerably enhanced
and the excess internal energy and free energy of the ions
became more negative in the presence of this solvent. The
question arises—what will happen if this model was studied
in a dipolar solvent? At least two effects can be expected; the
solvent will tend to increase the extent of the association due
to packing of the solvent molecules around the bonded ion
pairs or clusters. Also the dipoles of the solvent molecules
should screen the charges on the ions tending to decrease the
extent of ion association. We will study these effects in detail
in this paper.

Even though a general solution for the (SEM) in a dipo-
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lar solvent has been discussed by Wei and Blum,® we still feel
there is much left to be done. The work of Wei and Blum is
very general with allowance for stickness between all of the
species of different sizes that are present in solution. This
also makes their theoretical analysis more complicated than
necessary to understand the physical chemistry of weak elec-
trolytes. Moreover their discussion does not include a calcu-
lation of the association parameter A and the correlation
functions. Therefore, we will carry out our analysis in the
following pages limiting ourselves essentially from the be-
ginning to the case of ions and solvent molecules of the same
size with the prospect of stickiness or adhesion only between
oppositely charged ions. Our results include the determina-
tion of the assocation parameter A and the thermodynamic
properties, as well as the calculation of the correlation func-
tions. We will also discuss the solvation energy of the ions as
a function of the ion concentration in the presence and in the
absence of the stickiness between oppositely charged ions.
This is of great interest to chemists and has been studied by
Chan et al.”? in the limit of infinite dilution when there is no
stickiness between the ions. Wherever possible we also make
contact with the analysis by Wei and Blum® as well as with
previous work by others on ion—dipole mixtures.”'?

This paper is planned in the following way: in Sec. II the
decomposition and solution of the Ornstein—Zernike equa-
tion in the SEM in a dipolar solvent are presented in detail
and in Sec. III the thermodynamic properties of this system
and the solvation energy at the low ion concentration are
calculated. The numerical results are discussed in Sec. IV.

iI. SOLUTION OF THE ORNSTEIN-ZERNIKE
EQUATIONS FOR THE SEM IN THE MEAN SPHERICAL
APPROXIMATION

A. Decomposition of the Ornstein-Zernike equations

Our system is composed of three components: positive
and negative ions with a charge e¢; = z;e on each ion { where
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z; is the valence and e is the electronic charge, and dipolar
hard sphere solvent molecules with a dipole moment z. All
of the species have the same diameter ¢. Although a number
of papers have been contributed to the solution of the MSA
for the ion—dipole system, to our knowledge, the details of
the decomposition of the Ornstein-Zernike equation are
only given by Chan et al."® in Fourier space. We will first
discuss the decomposition in r space. For this system, the
interaction energy can be written as

uy; = z,z;e*/r, (2.1a)
uy = —z,eud®’'/r, (2.1b)
Ugy = —p2e''/r, (2.1¢)

where the subscript i,/ represents a positive or negative ion,
the subscript d signifies a dipole and r is the distance between
two particles. The angular functions have the following defi-
nitions:

(2.2a)
(2.2v)

where f,, is the unit vector in the direction of r and §; is the
unit vector along the dipole i. The several Ornstein~Zernike
equations can be written as

o1l _ 2 .a
¢ =18,

2 A A A A A A
¢“ = 3(8;F12) (8,F12) — 8,8,

hyy=cyotpicy *hy +p_c, *h_, +pdfc+d

X(r—r,w)h, (or)drde/dnr, (2.3a)

hy_ =C,_ +piCithy _+p_c,_*h__ +Pdfc+d

X(r—rwh, (or)dr'de/dn, (2.3b)

hya =CiatpiCiith g+p c, *h_, +Pdfc+d

X(r —r,w)h, (o0 )dr'de/4, (2.3¢)

h_g=c_gtpic_ *h 4+p_c__*h_, +pdfc—d

X (r—r,w)hy(or,o)drde/4r, (2.3d)

hig =Caa +piCas*h g +p_ca—*h_4+p, fcdd

X (@' —r,w)hy, (o) ,0")dr'de/4r, (2.3e)

where * represents a convolution integral, dw = sin ¢ d¢ dé
and r represents a vector coordinate. In the SEM a delta
function interaction is present inside the hard core at a dis-
tance r = L and the closure equations can be put in the fol-
lowing form

h, ,(N=h__(N= -1, (2.4a)
h, (Nn=h__(r)=-—1+4+AL6(r—0)/12, O<r<o

O<r<o

(2.4b)
ha(rw) =hy(o,r) = —1, O<r<o (2.4¢)
hu(rww)= —1, O<r<o. (2.4d)

In the MSA, the direct correlation functions outside the
hard core are approximated by their asymptotic forms

(2.5a)
(2.5b)

c;(r) = —PBz,z;é*/r, r>o

ciu (rw) = cy(w,r) = Peud®''/r, r>o

Cad (row') = Bﬂ2¢112/’3 (2.5¢)

where 8 = (kT) ~! in which k is Boltzmann’s constant and
T is the absolute temperature. To decompose Eq. (2.3), we
follow Chan et al.'® and introduce the following functions:

r>o

fi =1 +z.z°%0), (2.6a)
fa =S+ 2 (r¢%", (2.6b)
hy =% —zf" ()¢, (2.6¢)
Jaa =Sl + 10N+ 1N, (2.6d)

where f;; represents c; or h;, fi*= (f, . +f,_)/2 and

b = (fig +fu)/2, which correspond to the usual defini-
tions of sum functions for oppositely charged ions.>> A simi-
lar ansatz was used by Chan et al.'® in their discussion of
ion—dipole mixtures (without stickiness) in the MSA and
provides the crucial step in making the decomposition of the
Ornstein—Zernike equations. Taking the sum of Egs. (2.3a)
and (2.3b), the sum of Egs. (2.3¢) and (2.3d), and carrying
out the corresponding angular integrations leads us to the
following two equations:

hif =cii +peiieh i + pacigrh 3, (2.7a)
hid =cia +pcireh iy + pacigrh 3. (2.70)
Substracting Eq. (2.3b) from Eq. (2.3a) and Eq. (2.3d)
from Eq. (2.3c) and doing the corresponding angular inte-
grations, we have
hOOO — COOO +22+p0000*h000 _ (pd/3)c°“*h°“,
(2.8a)
hOIl — cOll + 22+p0000*h 011

+ (pa/3)c e (R 110 4 25 12y, (2.8b)

In deriving the above equations, we have used the assump-
tion implied in Egs. (2.6) and the definition that
p =p+ +p_. Substituting Eq. (2.6) into the last equation
of (2.3) and carrying out the convolution integrations lead
to

hbs =t + pchieh ™S + pacis ek, (2.8¢)
A0 ="~ 22, (p/3) ' *h ™ (p,/3)
X [c"1O%R 10 4 2¢! 2ap 112], (2.8d)

h12=c"2 22 (p/3)P*xh M 4 (p,/3)
X[ 1248 10 4 cU10kp 112 | (11245 112] (7 ge)

Up to now, we have separated the hard sphere part from the
electrostatic part. To simplify Eq. (2.8) further, let us define

po—pt, —piP +p 2, 29)
Botdd— p 1o ogp 12 (2.10a)
ho—dd_p1io_pz (2.10b)

with corresponding definitions for the ¢ functions. Equa-
tions (2.8) can then be put into the following form with the
help of Egs. (2.9) and (2.10)

h 0% = %0 4 5 cPP0xp 0% _ (p,/3)c ap O (2.11a)
B O oo 4 poc®xh 01 (pa/3)c xh +dd (2.11b)
Bt o+dd 5 ONypOll( o s3yetddyy vdd () 1)
B4 == (p,/3)cdxp — (2.12)
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Because the ion—diople correlation function is symmetric,
Eq. (2.11b) can also be written as

hOll =C0H +p0C011*h000+ (pd/3)c+dd*h0“. (211d)

Now the Ornstein-Zernike equations have been decom-
posed into three groups in 7 space: the hard sphere part given
in Egs. (2.7) and (2.8c), the electrical interaction part
shown in Eq. (2.11) and the pure dipolar part displayed in
Eq. (2.12) which correspond to the results given in Chan et
al’s paper®® in k space. It should also be noticed that the
electrical interaction part in Eq. (2.11) reduces to the differ-
ence equation of the SEM in the continuum solvent when the
dipole density p, —0. Because of the ansatz introduced in
Eqg. (2.6), the closure equations (2.4) and (2.5) of the SEM
in the MSA can also be separated into three groups:
(a) The hard sphere closures:

h#= —14+AL8(r—L)/24, O<r<o (2.13a)
his=—1 O<r<o ‘ (2.13b)
h% = —1, O<r<o (2.13¢c)
di=ds=cy=0 r>o. (2.13d)

(b) The ion-ion, ion—dipole and part of the dipole—di-
pole closures

ho® = —ALS(r— L)/ (242, ), O<r<o (2.14a)
RO g0 g2 _p+dd 0 O<cr<o (2.14b)
= _Be/r, r>o (2.14¢)
= Beu/r r>o (2.14d)
=0 r>o (2.14¢)
" =Bu*/r r>o (2.14)
ct¥ =281/, r>o. (2.14g)

(¢) The remainder of the dipole-dipole closures:
h~—%9=0, O<r<o (2.15a)
c™¥= — Bu¥/r, (2.15b)

At this point we see that the hard sphere part shown in Eqgs.
(2.7) and (2.8¢c) with the closures given in Egs. (2.13) are
exactly the same as that of the SEM with hard sphere solvent
which we have solved earlier.® The dipolar part Eq. (2.12)
with the closure given in Eq. (2.15) is the same as that of the
pure dipole case and its solution is a well known result ob-
tained by Wertheim.'* Therefore, we only need to solve the
electrostatic part of the interactions shown in Eq. (2.11)
with the closures displayed in Eq. (2.14).

r>ao.

B. Solution of the SEM in the PY/MS and HNC/MS
approximations

The solution of the OZ equations in the mean spherical
approximation for the ion-dipole system has been discussed
by Adelman and Deutch,” Blum,*'° and by Héye and
Lomba.'? Adelman and Deutch used the method of Laplace
transforms to solve the OZ equation while Baxter’s adapta-
tion of Wiener-Hopf factorization was employed by
Blum®~'° and Héye et al."? In the following we use Baxter’s
method to solve the set of OZ equation in the SEM. Defining
the three-dimensional Fourier transform

Sk) = Je“‘"f(r)dr, (2.16)
Eqgs. (2.6) can be written in Fourier space as

S (k) =fI(k) + 2,2,,°%(k), (2.17a)

Sia (k) = fl5(k) + 2,/ (k)g®' (k), (2.17b)

Sui (k) =fig(k) — z./°" (k)¢°' (k), (2.17¢)

Saa (k) = [ (k) + f11°(k) g1 1O(k) + 112 (k)g' "2 (k),

(2.17d)
where
SP(k) = 4n Owrzjo(kr)f°°°(r)dr, (2.18a)
FONCk) = 47riJ;wr2j,(kr)f°“(r)dr, (2.18b)
fHOk) =4r Owrzjo(kr)f”"(r)dr, (2.18¢c)
k) = —4rn owrzjz(kr)f”z(r)dr. (2.18d)

Here j; (kr) is spherical Bessel function of ith order and the
Fourier transforms of the angular functions are given by

$%' (k) = &k, (2.19a)
P"'0(k) =88, (2.19b)
$"12(k) = 3(8,k) (8,°k) — §,%,, (2.19¢)

in which all the hatted functions are unit vectors. In order to
use Baxter’s factorization method,!> we have to transform
the three dimensional Fourier transform back into one di-
mension, i.e., define

Fy(r)=[(pp;)'*/2m) fe‘ ikrplmn( ey dk. (2.20)

The one-dimensional correlation functions in r space can be
written as

F,(r) = 2mp, cor'po(r/r')f(’oo(r')dr’, (2.21a)
Fq(r) = _Fd:(r) =27( papo/3)
Xﬁwfpl(r//)ﬂll(f)dr', (2.21b)
Fun= (2ﬂp4/3)£wfp2(r/f)f‘”‘(r’)dr’, (2.21c)
Fo(r) = (2ﬂpd/3)£wfpo(r/r’)f“o(f)d/, (2.21d)

F3y(r) = Fiy + 2F 4 = (2mp,/3) f P [po(r/P 110

+ 2p, (/7)) ]dr, (2.21e)

where p; (r/7) is the Legendre polynomial of the ith order:
Do(x) = 1, p(x) = x,p,(x) = 0.5(3x> — 1). These F func-
tions correspond to Baxter’s J and S functions. If
S (ry=h""(r), then F,(r) =J,(r) and if
frm(r) = ¢™"(r), then Fy(r)=58;().

We can also put the set of Eqs. (2.11) into Fourier
space:
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hO%(k) = ™ (k) + poc®®(k)h (k)

— (pa/3)c® (k)R (K), (2.22a)
ROV (k) = M (k) + poc®O (k)R O (k)
+ (pa/3)c (k)R T (k), (2.22b)
= (k) + poc® (kYR O (k)
+ (pa/3)ct (k)R (k), (2.22¢)
h+#(k) = ¢t ¥ (k) — poc® (k)R OV (k)
+ (pg/3)ct ¥ (k)h + ¥ (k). (2.22d)

These equations have been given earlier by Chan et al.!
Changing the set of equations back into » space by one-di-
mensional inverse Fourier transformations and using Eq.
(2.21), we have

Ji(r) =8;(r) + S, (1)*J;(r) + Sy (r)*J (1), (2.23a)
Jid(r) =Sid(r) +S,-,-(r)*J,-d(r) +S,-d(r)*J,;§(r), (2.23b)
Jui (r) =S4 (r) + S5 (r)*J;; (r) + 8 3 (r)*J 4 (r), (2.23¢)

ar(P) =8,5(r) + 8S4,(N*J (r) + 8 (] (1),
(2.23d)

which can be represented collectively in k& space by

J(k) =S(k) + S(k)J(k), (2.23e)

where J(k) and S(k) are 2 X 2 matrices. These equations are
similar to Baxter’s original form for mixtures of molecules
with central forces.'® His factorization implies that

8; — Sy (k)= >0 (k)Qu( — k), (2.24)
[
where the Fourier transform of the Q function is defined as

Q,(k) =6, — J Q, (redr.
0
It follows from Egs. (2.23) and (2.24) that

(2.25)

S,(1) =0, (r) — zfo O (r+ 00y (Dd.  (2.263)
k

Similarly from Egs. (2.23), (2.24), and (2.25), one finds
that -

J,j(r)zQ,.j(r)+Zf Qu (D, (|[r —tDdz. (2.26b)
k JO

In the remainder of this paper, we will assume a univa-
lent electrolyte (z, = —z_ = 1) with stickiness between
oppositely charged ions at a distance L = o — , which means
the bonding takes place only just inside the contact distance
of 0. Before we give the Q functions explicitly, let us deter-
mine the functions J, ;(r) forr<oand S; (r) for r> g. Com-
bining Eq. (2.21) with the closure of (2.14), we see that
J; (r) is a polynomial of 7 in the range r < 0.

Ji(r) = Zﬁpof rh % (r)dr — mpyAo®/12 = b, — v/0,
’ (2.7a)

Jia(r) = —J4(r) =2m( papo/3) ‘“rfwh M (rydr=b,r,
’ (2.27b)

Jhn) = (27rpd/3)[fwrh o (rydr — jwrh 112(r)dr]

ag a

+ vadﬂf h'2(nyr~'dr=5b4r+ b, (2.27¢)

The constants are

by = 21rp0f rh (r)dr, (2.28a)
b, =27( papo/3) ”ZJ RO (r)dr, (2.28b)
bi(r) = (27Tp,,/3)J- rlA%"N () — V2P ]dr,  (2.28¢)
b,= Zﬂpdf A" (ryr~'dr, (2.284d)
where
v="71/2, (2.28¢)
Mo = TPea/6. (2.28f)
and the electroneutrality condition implies that
f Ji(dt= —1/2 (2.28g)
0

Here, in order to make an easy comparison with the known
facts, we have used the same notation as Blum®® and Hoye
and Lomba'? for the constants b, which play an important
role in determining the excess internal energy and the same
definition for v as that in our earlier paper. We can calculate
S;; (r) for r> o in a similar way by combining Eqgs. (2.21)
and Eqs. (2.14¢)—(2.14f) when it is found that

S;(nN=—d 7/22, r>o (2.29a)

Su(r)= —8,(r)=dyd,e /2, r>o (2.29b)

SH(rN =0, r>o (2.29¢)
with the definition

d} = 4nPpe’, (2.30)

d3 = 4nPp,u’/3. (2.31)

In deriving Eq. (2.29), a screening function e ~ * has been
attached to ¢; (r) and ¢, (). Actually, Egs. (2.29) are the
same for ion—dipole mixtures because, in the MSA, the stick-
iness only appears at contact. It is well known that Baxter’s
Q functions are second-order polynomials of 7, for r < , in
the mean spherical approximation, and we expect it to keep
the same form when we add the stickiness. Therefore we
write

Q,(r)=86,07+Q5(r) —A,e™7, (2.32)
QN =(r—0)Q};+ (r—0)°Q7/2, r<o(2.33a)
=0, r>o0 (2.33b)

where the first term in Eq. (2.32) comes from the stickiness,
Q7 (r) is defined in Eq. (2.33) and the coefficients Q » o
and A4;; are as yet undetermined. Hereafter we will use re-
duced units by putting o = 1. Since there is no stickiness

assumed between the ions and dipoles or between di-
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poles,0%, = Q% = 0. To determine the sticky term Q %, we
have to make use of the fact
Ji(1=)=J;(1+)—v=b, (2.34)
which can be seen from Eq. (2.27a). Substituting this in Eq.
(2.23a) for J,; (r) and comparing it to the case without stick-

iness, one finds that the sticky term Q7% for the ions can be
written as

= —mph /12= —w, (2.35)
where the last equality shows that v is the negative of Q2.
From the asymptotic form of the S;; () in Eq. (2.29) and
Q; (r) in Eq. (2.32), we can get the Fourier transforms

S, (k) and @ (k), substitute them into Eq. (2.24) and put
k = 0, when the following set of equations is obtained:

a} +a} =dj, (2.36a)
—a,K; +a,(1 —Ky) = —dyd,, (2.36b)
(1 '_Kdd)2+K§i =y +d, (2.36¢)
with
a,=A,, (2.37a)
a,= A, (2.37b)
K; =f Q% (rdr, (2.37¢)
0
y,=(1—=5,/6)/(1 + b,/12)?, (2.37d)

where we have used the fact that 4, = 4,, = 0, which will
become clear later. Our K;; and X, correspond to Blum’s
K,, and K, Substituting the Q functions defined in Eq.
(2.32) into Eq. (2.26b) and taking the limit z = 0, leads to
the following set of equations:

Ji(r)=Q0(r)—4; —V+ZJ- Ju(r—0Q% (0)dt
% Jo

— zf Ju(r— ) A dt — EIwJ,.,‘( — DAdt,
0 k JO
(2.38a)

Ja(r) = QLN — Ay + 3| Julr = Q3 1a
k JO

-3 f Jo (r— 1) A, dt — zf Ju(— D)4, dt,
k JO k JO
(2.38b)

Jaa(r) = Q% (r) — Ay + Zf Ju (r—0Q%,()dt
T Jo
—Zdek(r—t)Akddt
% Jo

—ZJ Jdk( _t)Akddt,
k JO -

Ju(ry= —J4(n), (2.38d)

where the summations range over k£ from / (ion) to d (di-
pole). Substituting Eq. (2.33) for Q3 (r) and combining
Eqgs. (2.38) and (2.27), a set of algebraic equations is real-
ized. After much algebra, the constants A; in Baxter’s Q
function and K; defined in Eq. (2.37c) can be expressed in
terms of by, b,, b,, and A. The final results are

(2.38¢c)

a,=4; =‘[b03?, —b%8,0/3 +vA(1 + by) /Dy,

(2.39a)

@, =A;; = b,[bsBs/2 + 1 + by/12 + b2/12]D,,
(2.39b)
Ay =A4=0, (2.39¢)
K,= —0./2, (2.39d)
Ka= —Ql./2, (2.39)
K, =b{1 +a,A}/24, (2.39f)
1 — K, = [28; — a,b,A]/(24), (2.39g)

where

Dy = — [(1+by)Bs— b%/12]%/2, (2.40a)
A=p%+b1/4, (2.40b)
A=by/2+2B,,/3, (2.40c)
Bs=1+4b,/3; Bs=1—b,/6, (2.40d)
Boa=1—0,/24; B, =1+b/12 (2.40e)

and we have followed Blum’s notation®'! as far as possible.
Meanwhile, we find that the coefficients of the Baxter’s func-
tion in Eq. (2.33) have the same form when there is no sticki-
ness, and agree with those given by Héye and Lomba,'? ex-
cept for some small disagreements which may be due to
typographical or other errors:

Q= [a,(bA —b3IA/2) — b1/2]/A, (2.41a)
Qs = [ax(bod — bTA/2) — b,B3]/A, (2.41b)
QL= —b[(1+a,A)B;+aA/3]/A, (2.41¢)

Qla= —2+2B3/A —a,[b,A/3 + b,AB;1/A,

(2.41d)
Qi=0QuL=0 (2.41e)
r= —bb,(1+a,A)/A—a,b,, (2.41f)
o= [2b,8; — a,b,b,A1/A — asb,. (2.41g)

Here we pause to check the limiting condition ( p, —0) and
to make contact with our earlier results.> The definition of
h%(r) in Eq. (2.6a) can be written as

RO(r) = [h, (1) —h,_(N]/2 (2.42)
which is the negative of the difference function A, (7) ap-
pearing in our earlier paper.'~> When the density of the sol-
vent goes to zero ( p, —0), we see from Eqgs. (2.36), (2.39),
and (2.28) that ¢,-0, b,-0, b,-0, by~ — 2mp,J,, and
a,—« where k = d,, is Debye screening constant and J,, is
defined by

Jp = f hp(r)rdr.
It follows from Eq. (2.39a) that

(2.43a)

Jp={(1+x4+v) = [(1 +v)% +2«]"}/k. (2.43b)

This is the result given by Rasaiah and Lee? for the SEM in
the continuum solvent. Also it can be seen that
Q- — 2mpyxd, and Q% (r) = 2mpeq3 (7) for the SEM in a
continuum solvent.> From the above solutions, we will see
that all of the equilibrium properties can be expressed in
terms of four parameters by, b,, b,, and v or A, which can be
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derived from Eqs. (2.36a)—(2.36¢) and the following rela-

tion for A.
So far we have not considered the approximation for

stickiness. As discussed elsewhere,"** the dissociation pa-
rameter A is related to the parameter 7 introduced by Baxter

in his study of sticky hard spheres by
Ar=y,_(0). (2.44a)

7 is the inverse of the sticking coefficient § (7 = 1/£) which
is defined by the Mayer f function for oppositely charged

ions
fe_(Y=¢L6(r—L)/12 -1
=exp( —e,e_/kTr) —1

(2.44b)
(2.44¢)

O<r<o
r>o.
In the PY/MS approximation, we have
Ar=g, (o%)—c,_(c")

=14ha"%0") —h"®0") — [ (or) = ()]

(2.45)
while the HNC/MS approximation,
Ar=explh, _(o) —c,_(cd%)]
=explh™(c*) —h™(c™)
— [eFte™) = *(e™) ]} (2.46)

When the stickiness occurs at contact, as in the present case,
7 can be determined from an equivalent square-well poten-
tial with the same second virial coefficient as adhesive hard
spheres through the relation'?

7=0 exp( — &/kT)/(12wa” + w?). 2.47)

This method was first proposed by Cummings and Stell'® in
their treatment of chemical reactions of uncharged systems.
Here ¢, is the depth of the potential well where the binding
occurs between the oppositely charged ions and w, which is
the width of this well, is chosen as 0.1¢. Thus the determina-
tion of by, b,, b, and A reduces to the solution of four nonlin-
ear algebraic equations.

Following Hernandez and Blum’s'! analysis of a mix-
ture of ions and dipoles, we can set up a cubic equation for b2
[see Eq. (2.50) below] with b, b, represented in the coeffi-
cients. Starting from Eqgs. (2.36), (2.39), and (2.40) the
following equation can be derived after some algebra

alﬁ:; + azbl/z = dﬂylA' (2.48)

Substituting a, and a, from Eq. (2.39a) and (2.39b), we
have

boBs + b3/6 + vBy(1 + by) = y,dyD,. (2.49)

Squaring this and replacing d 3 with a2 4 a3 we get a cubic

equation
Co+ b2 +ebt +cb$ =0, (2.50)

where
o= —biB3 + 316385 —2vboB3 (1 + b,)

+ 2vbBE(1 + bo)y? + V(1 + by)*(—B% +11B%),
(2.51a)

=y (1 +b,/12+b2B%/4) + by?
X {B3(1 + b,/12) — 282, — vB5(1 + by) /3

+ [BE( + be)V2/2 + BL(1 + by)vbe ]2 } — boBs,
(2.51b)

ce={[6(1 + by/12) + 3bsB; + 4B3,] — 1}/36
+2(1 4 b,) 2 /16, (2.51c)

Ce=yi/144. (2.51d)
It is easily verified that this equation reduces to Hernandez
and Blum’s result'' when the stickiness vanishes (4 = 0).
The solution of this equation requires knowledge of b, and
b,, which comes from the solution of Eq. (2.36).

C. The correlation functions

In deriving the above results, we mainly employed the
factored equations for J;(7) in Eq. (2.26b). From Eq.
(2.26a), the direct correlation functions can be calculated
analytically for r < o since the Q functions are known. Equa-
tions (2.26a) can be put into the derivative form by direct
differentiation with respect to »

SN =0%(r—a,0%(r) —a,0%(r) + (@* +a2)/2

- JwQﬁ'(t) [@%(t—r) —v)dt

_fer?;(t)Q?d(t—r)dt+alv (2.52a)
Su() =050 — [ Qi - ra

—J:wQ,fd(t)di(t——r)dt, (2.52b)
S1a() = Q%) - [ 05Ot —rrdr

- [(etumesu—nar (2.520)

Making use of the definition for S, (r) in Eq. (2.21) and
carrying out the above integrations, we have

C®%(r) = (2mpy) ~'[ (0, Q1 + a,Q 1)

+ (@7 +Qihr/2— /], (2.53a)
CoM(r) = QM) T (papo/3) [ —vQ 4 + (@1 Q4

+ Q1@ +vQ5)/2

—(Q:Q4 + 2.05)r/6], (2.53b)
C+4(r) = Qmp) Q& + Q172
—(Qu+QiH/24
- [Qi—(Q#Z+Qi/6
+(QuQi +Q0404)/2]} (2.53c)
with three relations among the coefficients
Qi=—[Qi+a)’+ (@i +a)*}/2—=Q}v—ayw,
(2.54a)
Qfd = - (Q;iQtlii + Q;dQ:lid)/z
+(Q:Q4+Q.Q2)/6, (2.54b)
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Q=0+ [(Q45/2— Q) —(Q1/2—Q1)7)/2.
(2.54¢)
Again it can be seen that when we take the limit p,; —0, we
have
Q- — 2mpulp, (2.55a)
— rc®(r) k2T pr(1 — mpoJpr) + Av/24 (2.55b)
which is the result for —re,(r)=—rlc, _(r)
— ¢4 +(r)]/2 of the SEM in a continuum solvent.> Also
when we take the limit A = 0, i.e., on turning off the sticki-
ness, Egs. (2.53) and (2.54) reduce to the equations for ion
dipole mixtures given by Vericat and Blum.'® With the help

of Eq. (2.21), the contact value of the correlation functions
can be calculated directly from Eqgs. (2.38). The results are

—2aph ® (1 + )= —v(v+ Q}) —a,(by+ v) (2.56a)

— 27 popa/3) 2RO (1 + ) = —vQ s — ay(by + v)
(2.56b)

—2m(pa/3)h + (1 + ) = ab, (2.56¢)

Here again Eq. (2.56a) reduces to our earlier result when the
density of the solvent p,; goes to zero.’

lil. THERMODYNAMICS

As discussed elsewhere, "3 the number of associated ion
pairs in the SEM is directly related to the association con-
stant A and the density of the electrolyte, which can be ex-
pressed as

(N) =5 (3.1)

Because we have added the stickiness just inside the
hard core of oppositely charged ions at contact and used the
MSA outside the hard cores, the excess interaction energy
per unit volume can be written as™®% !

E*/kT = [d2b, — 2dod,b, — 2d 3b,] /47 — po{ N )Be/2.
(3.2)

Here the last term is the contribution from the stickiness,
while the others have a similar form in the absence of sticki-
ness.”>'? If we are interested in the excess internal energy
due to the interaction between the ions, we have

E/pokT = d2by/ 247, — (N )Be,/2 (3.3)

here E§* is the ion—ion excess interaction energy per unit
volume. If we choose the pure dipolar liquid as the reference
system, Eq. (3.2) can be written as

AE ™ = pye*by — po{N Y€,/2 — 2( pgpa/3) " eub,
_2pdﬂ2[b2—b2(p=0)]/3' (3.4)

Asp =0, b, = 0and b, is related to the dielectric constant of
the dipolar solvent. As discussed by Blum,? the excess chem-
ical potential due to the electrical interactions in the MSA
can be expressed as

ﬂex_'uex,0= (l/po)[AEex] (3.53)
and the mean activity coefficient of the electrolyte is given
byl7

kTlny, =kTIny° + p,AE®, (3.5b)

where 7” is the activity coefficient of the uncharged solute.

From the discussion in Sec. II, it follows that to get the
complete solution to this problem, we have to solve the set of
nonlinear algebraic equations given in Egs. (2.36) and
(2.45) or (2.46) for by, b,, b, and A. Even though they could
be solved on a computer, they are still too complicated be-
cause the nonanalytic form of the solutions obscures their
relationship to the thermodynamic properties. So at first, we
wish to see what happens analytically in the limit of infinite
dilution of the ions. When p, is very small, b2 <0 and
bt <b?. Making use of these facts and substituting D, de-
fined in Eq. (2.40a) into Eq. (2.49), we have

bo[ —B; "‘J’1d06§ +}’1d036b%/12 - V»Bs]
=y1d(ﬂ§/2+bf/6——y,d(ﬂ6bf/12+vﬁ3. (3.6)

From the solution of Eq. (2.12), the dielectric constant €
determined by Wertheim in the MSA can be expressed as'*

€=gq./q_=(1+452 (1 +6)*(1 -26)°¢

=BiBHLB: " (3.7)

where we have used
§=mf A2yt = by/12, (3.82)
g_=BiB5" (3.8b)
g9, =BiBs" (3.8¢)

Using Eqgs. (2.37d) and (3.7) in Eq. (3.6) and expanding
the denominator leads to the following expression for by:
by= —(k+2v)/[2(1 +k+v)]1 + b2

X[2B6' =485 ' —KkBs "/

(I+x+wv]/[24(1 + x4+ )] (3.9

Here « is the Debye screening constant defined by x = d/
€'/? and € is dielectric constant in the MSA. At low concen-
trations, near the infinite dilution limit, the ion—ion interac-
tion energy can be expressed as

E T = poe’by — polN )€/2
= —po (K +2v)/[2(0 + k +v)] + b?
X[285"'—48; "' —xkBs /(M +k+v)1/
[24(1 + 64+ v)] — po(N )&,/ 2. (3.10)

We will next discuss the calculation of the solvation en-
ergy, which is defined as the interaction energy of a single ion
with solvent molecules around it, and can be expressed in the
following form

E = p,,fu,-d (r,w)g,, (r.@)drdow

= — (41r/3)pdz,?e,quh 0t (p)dr

o

= —2(pa/3p,) "/ *22eub, (3.11)

which relates the solvation energy to b,. This definition is
identical to Chan et al’s Eg,,,."> Atr =1, Eq. (2.38b) can
be written as
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1
b, = — ay/2 — aybo+ bo| Q% ()dr
0

1
+JJ,-,,(1 —0Q% (0t (3.12)
(4]

which enables the solvation energy at finite ion concentra-
tion to be calculated in the SEM.

In the following we confirm the expectation that the
solvation energy at infinite dilution in the SEM is identical to
the solvation energy of free ions since the electrolyte should
be completely dissociated in this limit. As the density of the
electrolyte goes to zero, b,—0, K ; -0, which can be seen
from Eqgs. (2.28a) and (2.39f). Now Egs. (2.36b) and
(2.36¢) can be written as

a)(1 —Ky) = —dod, = — 4ufue( PdPo/3)1/2:
(3.13)

(1-Ku)? =y +d3. (3.14)

From Wertheim’s solution for the pure dipolar system,'* we
have

g, —q_=BiB*—BiB = —4nBu’p,/3=d}.
(3.15a)

Substituting Egs. (3.15a) and (2.37d) in Eq. (3.14) leads to

(l_kdd)2=q+ (3.15b)
and Eq. (3.13) becomes
a, = — 4mBue( papo/3q. )"~ (3.16)

Now substituting Eq. (3.16) back into Eq. (2.36a)
a, = [4,Bpoe — (4mPue)’pupo/3q.]""

= [47Bp,e*q_/q.1"* = [4mBp,e?/€]'? =,
(3.17)

where « is defined by xk = d,/€'/? and € is Wertheim’s dielec-
tric constant. From here we can see that a, also goes to zero
as p,—0. Now Eq. (3.12) can be put into the following form

by(1 — M) = —a,/2, (3.18)
where M is defined by
1
M=f (1 —0Q% (1. (3.19a)
0

At infinite dilution QY% (#) can be expressed analytically
as13,19

Q% =28 [ BB P —1) —3¢B52(r— 1], (3.19b)

where £ is given by Eq. (3.8a). Integrating Eq. (3.19a) with
the help of Egs. (3.19b) leads to

M=1—g"7+3£/(1 26 (3.20)

Combining Eqgs. (3.20), (3.16), and (3.18), the solva-
tion energy of a single ion immersed in a infinitely dilute
solution can be written as

E = —&[(1—eM[1—-3£g32(1=28)72]"".

(3.21)

This is the result given by Chan ez al."? in their discussion of
the Born energy of free ions at infinite dilution. If the electro-
lyte has a finite concentration, however, Eq. (3.11) is ex-

pected to give a more accurate result. We will compare this
with Eq. (3.21) in Sec. IV.

IV. RESULTS AND DISCUSSION

The equilibrium properties are determined by four func-
tions by, b, b,, and A which are related by four nonlinear
equations as indicated earlier in Sec. II. The problem there-
fore reduces to solving these Eqs. (2.36) and (2.45) or
(2.46). To do this we need the contact value of A (1 4 ),
which can be written as®

RE(14+)= —14 Q2+ 10+ 7, —2u)/
[2(1 — 70)?] + vA /24. (4.1)

7 is determined from Eq. (2.47) and ¢, is chosen as the elec-
trostatic interaction energy at the contact between the posi-
tive and negative ions. In all the following calculations, we
assume the reduced density of the dipolar solvant , = 0.37,
the dipole moment of the solvent = 1.85 D, the tempera-
ture 7' = 298.15 K and the diameter of the particles o = 2.76
A. The dielectric constant of the vacuum background is tak-
en to be unity. We also assume that the electrolyte has
charges + 1and — 1, respectively, on the positive and nega-
tive ions. If the PY/MS approximation is used, a negative
solution for A is obtained, which is unrealistic and similar to
what was found earlier' in the SEM and a hard sphere or
continuum solvent. Therefore all the results given in the fol-
lowing discussion are for the HNC/MS approximation
which leads to positive value of A.

Figures 1 and 2 are the plots of the association param-
eter A and the average ion association number (N ) versus the

L=
g
(=4
g
8r
g
z
-t
P
(=4
3
A
[y
]
C
° 1 1 1
0.0 0.5 1.0 1.5 2.0
C--M/L

FIG. 1. The association number A plotted as a function of the concentration
of a 1-1 electrolyte in the SEM with 6=2.7 A, T=298.15 K,
€, == 200.3kT. Curve A is for the electrolyte in a hard sphere solvent of re-
duced density %, = 0.37, curves B and C are the corresponding results in a
continuum solvent and a dipolar solvent, respectively. The dipolar solvent
density is the same as the density of the hard sphere solvent.
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FIG. 2. The average association number (N ) of the oppositely charged ions
plotted as a function of the electrolyte concentration. Curve A is the result
of the SEM in a hard sphere solvent, curves B and C are the corresponding
results in a continuum solvent and a dipolar solvent, respectively. See cap-
tion of Fig. 1 for the details of the electrolyte parameters.

concentration of the electrolyte. To make a comparison, we
calculated A for three different systems using the same model
parameter 7 for stickiness. Curves A, B, and C are results of
the SEM in hard sphere, continuum and dipolar solvents,
respectively. We see that the hard sphere solvent has a smail
packign effect on the ion association, which makes 4 and
{N) slightly larger than in a continuum solvent while the
dipolar solvent mainly has a screening effect on ion associ-
ation, separating the ions one from another making A and
(N ) smaller than their values in a continuum solvent. With a
dielectric constant of unity it is seen that the association
number (N ) of the ions reaches six in both the continuum
solvent (or vacuum) and the hard sphere solvent, which
may be due to the formation of an octahedral or other clus-
ters. We will not pursue this aspect of our work any further
here because we wish to concentrate our efforts on the effect
of a dipolar solvent on the equilibrium properties of a weak
electrolyte.

To determine how the model parameter €, influences
the ion association in this solvent, we have solved the four
equations (2.36) and (2.46) at different values of €, (or 7)
to determine A and (N ); the results are shown in Figs. 3 and
4. It can be seen that the extent of the ion association de-
creases as €, becomes smaller, which is reasonable because €,
characterizes the extent of the sticky interaction (weak or
strong) between the oppositely charged ions.

The results of b, b, and b, with and without stickiness
are plotted in Figs. 5, 6, and 7 for €, = 200.3 kT The figures
show that b, becomes more negative and b, less positive
when stickiness is added between the positive and negative
ions with the opposite being true for b,. It is apparent from
Eq. (3.2) that b, b,, and b, are related closely to the energies
of ion—ion, ion—dipole, and dipole—dipole interactions; the ad-

LAMD
100 200 300 400 500 600 700 8O0 900

0

0.0 0.5 1.0 1.5 2.0
C--M/L

FIG. 3. The change of the association parameter A with the electrolyte con-
centration and the model parameter ¢,. A: €, = 200.3kT, B: €, = 198.3k7,
C: €, = 196.3 kT,D: €, = 194.0kT. See caption of Fig. for the other param-
eters.

dition of stickiness to the oppositely charged ions increases
the ion—ion interaction strength and decreases the ion—di-
pole interaction strength making b, more negative and b,
less positive. Since b, becomes more positive when the sticki-
ness is added to the ions this implies that the dipole—dipole
interactions are enhanced concurrently. The approximation
for by, given in Eq. (3.9), is also plotted in Fig. 5 (curves A

<N>

pic ] I 1
0.0 0.5 1.0 1.5 2.0
C--M/L

FIG. 4. The change of the average association number (N ) with the electro-
Iyte concentration and the model parameter ¢, A: ¢, = 200.3k7, B:
€, = 198.3kT, C: &, = 196.3kT, D: €, = 194.0kT. See caption of Fig. 1 for
the other parameters.
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bo
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FIG. 5. The plot of b, [see Eq. (2.28a)] as a function of the electrolyte
concentration. Curves A and C are the approximate solutions [Eq. (3.9)]
in the absence and in the presence of stickiness, respectively; curves Band D
are the corresponding exact solutions to the MSA. See caption of Fig. 1 for
the details of the electrolyte parameters. b, is related to the ion-ion interac-
tions.

-0.7 0.6

and C) which shows that the departure from the exact solu-
tion is small at low concentrations, but becomes larger as the
concentration of the electrolyte increases.

The excess ion—ion interaction energies (including the
binding energy) given in Eq. (3.3) are plotted in Fig. 8—
curve A is the result for the SEM in a dipolar solvent, curve B

0.8
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0.0 0.5 1.0 1.5 2.0
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FIG. 6. The plot of b, as a function of the electrolyte concentration. Curve
A: the result without stickiness, curve B: the result for the SEM. See caption
of Fig. 1 for the details of the electrolyte parameters. b, is related to the ion—
dipole interactions.

e
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0.5

FIG. 7. The plot of b, as a function of the electrolyte concentration. Curve
A the result for the SEM, curve B: the result without stickiness. See caption
of Fig. 1 for the details of the electrolyte parameters. b, is related to the
dipole—dipole interactions.

and curve C are the results for the same electrolyte without
stickiness in a hard sphere solvent and in a dipolar solvent,
respectively. Note that the dielectric constant of the contin-
uum and hard sphere solvents are taken as unity. We have
not plotted the energy for the SEM in a hard sphere solvent
in Fig. 8 because the binding energy equal to po(N )€,/2 is
too large on the scale of this figure—see also Fig. 2. Figure 8
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FIG. 8. The ion—ion interaction energy plotted as a function of the electro-
lyte concentration. A: the SEM in a dipolar solvent, B: electrolyte without
stickiness in a hard sphere solvent, C: electrolyte without stickiness in a
dipolar solvent. See caption in Fig. 1 for the parameters.
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FIG. 9. The change of the ion solvation energy with the concentration of the
electrolyte. A: the SEM, B: electrolyte without stickiness, C: both electro-
lytes at infinite dilution, €, = 196.3kT. See caption of Fig. 1 for the other
parameters.

shows that the ion—ion interaction energy in the absence of
stickiness is greater in a hard sphere solvent than in a dipolar
solvent because of the absence of screening. However, the
addition of a sticky interaction between the ions in a dipolar
solvent makes the ion—ion interaction energy more negative.

In Fig. 9, the solvation energy is plotted according to
Eq. (3.11). The horizontal line C shows Chan’s result at
infinite dilution given in Eq. (3.21), while curves A and B
are the results of Eq. (3.11) with and without stickiness,
respectively. In both cases, the energies reduce correctly to
the same limiting value at infinite dilution. It will be noticed
that the solvation energy becomes less negative with increas-

00 10 20 30 40

FIG. 10. The ion~ion radial distribution function in the HNC/MS approxi-
mation for the 1-1 electrolyte at a concentration 0.1 M, €, = 196.3kT,
74 = 0.37, T= 298 K. The dashed line corresponding to the SEM in a dipo-
lar solvent. The full line corresponding to the electrolyte in the same system
without stickiness.

19
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FIG. 11. The ion—ion radial distribution function in the HNC/MS approxi-
mation for a 1-1 electrolyte at a concentration 1.0 M, ¢, = 196.3kT,
74 = 0.37, T=298 K in a dipolar solvent. The dashed line shows the re-
sults for the SEM in a dipolar solvent; the full line the corresponding results
for the same system in the absence of stickiness.

ing ion concentration. This may be understood as follows—
when the ion concentration increases, each ion is not sur-
rounded by fewer solvent molecules than at infinite dilution;
that is to say the solvation number of the ion decreases lead-
ing to a smaller solvation energy. When the stickiness is add-
ed to the oppositely charged ions, the solvation shell of each
ion is reduced further by association making the solvation
energy even smaller.

Finally, we will discuss the radial distribution functions
for this system; they were calculated by Perram’s method.'®
We have plotted the ion—ion radial distribution function at
two different concentrations (0.1 and 1.0 M) in Figs. 10 and

74

G4+p(R)

-1 v :
00 10 20 30 40

R/SIG
FIG. 12. The ion—dipole radial distribution function in the HNC/MS ap-

proximation for a 1-1 electrolyte at two concentrations 0.1 and 1.0 M,
€, = 196.3kT, 5, = 0.37, T = 298 K. See caption of Fig. 1 for other details.
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11, and the ion—dipole distribution functions at the same
electrolyte concentrations in Fig. 12. The full lines are the
results for charged hard spheres in a dipolar solvent, and the
dashed lines are the calculations for the SEM in a dipolar

solvent. The addition of a sticky interaction between opposi-
tely charged ions reduces the contact value of g, _(r) and

alters the distribution functions beyond this distance espe-
cially at high concentrations (~1.0 M—see Fig. 11). The
smaller contact value at r = o + implies that the binding
between oppositely charged ions at r = o — reduces the
probability that a free ion appears in the vicinity of its
counter ion. At higher concentrations a steep reduction in
g4 _(r) justbeyond r = o + is also observed. The opposite
is true for the g, , (7). Figure 12 for the ion—dipole radial
distribution functions, shows that the contact value of
g . 4 (r) alsodrops sharply when the oppositely charged ions
stick to each other.
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