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The mobility of simple ions such as alkali-metal and halide ions at room tempera-
ture shows two anomalies. Firstly, there are maxima in mobilities as a function of
ion size for both positive and negative ions and, secondly, the maximum for negative
ions occurs at a larger ionic radius than the maximum for positive ions. Theoretical
treatments of this problem are reviewed and it is concluded that a molecular treat-
ment of the system is needed to understand the results. Computer simulation using
the simple point charge model (SPC/E) for water reproduced the observations and
is used to discuss the application of theories. In particular, the nature of the first
solvation shell is correlated with ion mobility. Simulation reveals a further anomaly,
namely that if the charge is removed from a large ion, then it moves more slowly. This
is interpreted as the result of formation of a solvent cage around the hydrophobic
solute. The changes in local structure resulting from changes in charge and size also
affect the solvation thermodynamics. Simulations show that the solvation entropy
has a double maximum when viewed as a function of charge. The local minimum
near zero charge is interpreted as being due to hydrophobic order, and the maxima
as the result of structure breaking. This double maximum in the entropy of solvation
is a signature of the hydrophobic cage effect. Comparisons are made between ion
mobilities in liquid water at ambient and supercritical conditions.
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1. Introduction

Water is indispensable to life and is a solvent in many processes of chemical and bio-
logical interest. The properties of water are also very unusual (Franks 1973; Eisenberg
& Kauzmann 1969). Of these, the best known is the maximum density at 4 ◦C, which
influences its properties near melting. For example, ice floats on water, thus ensuring
the survival of marine life in winter. The high dielectric constant of water at room
temperature (ε ≈ 78) favours the dissolution of ionic and polar species and renders
hydrocarbons, inert gases and non-polar solutes relatively insoluble. This situation is
completely reversed in the supercritical region that lies in the vicinity of the critical
density of 0.32 g cm−3 and above the critical temperature of 640 K. The dielectric
constant of water is low (ε ≈ 5) in this region where it is a poor solvent for ionic
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and polar solutes but a good solvent for non-polar species. The change in the dielec-
tric constant of water with temperature has a profound effect on the properties of
aqueous electrolyte solutions. For example, an aqueous solution of sodium chloride
is a strong electrolyte at room temperature and a weak electrolyte at supercritical
temperatures. Sodium chloride is thus completely dissociated into ions in aqueous
solution at 298 K, but the little that dissolves in water above 640 K is strongly asso-
ciated into pairs and possibly even clusters (Tester et al . 1998; Koneshan et al . 2001;
Koneshan & Rasaiah 2000).
A detailed understanding of water requires a microscopic or molecular viewpoint

(Stillinger 1980). There is a lot known about the spatial correlation between atoms
in liquid water from X-ray and neutron diffraction studies, but surprisingly much
more needs to be discovered, especially about changes in its structural and dynamical
properties with temperature (Soper et al . 1997). Liquid water is neither a continuum
dielectric nor is it a simple dipolar fluid, although its behaviour is often described
in these terms as a first approximation. At a molecular level, the properties of water
are ascribed to the asymmetric charge distribution in the molecule that favours a
coordination number of four through hydrogen bonding, two of which are accepted
and two donated. This arrangement leads to an open network structure in which the
hydrogen-bonded neighbours are constantly switching allegiances in a promiscuous
exchange of partners. It is the asymmetric charge distribution of the water molecule
that differentiates between the solvation of positive and negative ions and breaks the
symmetry of the simple dipolar description of this solvent (Koneshan et al . 1998a, b;
Lynden-Bell & Rasaiah 1997).

2. Solvation dynamics and the mobility of ions in
aqueous solution at infinite dilution

An ion dissolved in water polarizes the surrounding medium by changing the local
orientation of the water molecules and by polarizing the electronic structure of indi-
vidual molecules. The dynamics and the equilibrium electrostatics of this polarization
have a direct influence on the transport coefficients and thermodynamics of solva-
tion. In the continuum description of ions in solution, the free energy of hydrophilic
solvation of an ion of radius Ri and charge q is given by the Born equation (see
Robinson & Stokes 1959):

∆Asolv = − q2

8πε0Ri

[
1− 1

ε

]
, (2.1)

where ε0 is the permittivity of free space, and ε is the dielectric constant of the
medium. Differentiation with respect to temperature leads to the entropy of solvation

∆Ssolv =
q2

8πε0εRi

d ln ε
dT

, (2.2)

and the energy of solvation ∆Usolv = ∆Asolv + T∆Ssolv. For water at 298 K, ε =
78.358 and dε/dT = −0.3631 K−1, from which it follows that at room temperature
(298 K), ∆Asolv = −686q2/Ri kJ mol−1 and ∆Ssolv/k = −4.9q2/Ri when the ion
radius Ri is in angstroms. Thus, continuum theory predicts a parabolic dependence of
the free energy, entropy and energy of solvation on the charge q. The thermodynamics
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Figure 1. Solvation dynamics response function S(t) of cations and anions at 298 K determined
by molecular dynamics simulation of ions in SPC/E water (from Koneshan et al . 1998a, b).

of solvation of positive and negative ions of the same size are the same in this theory.
This is contradicted by experimental data, and many attempts have been made
to reconcile this discrepancy by adjusting the sizes of the positive and negative
ions.
The entropy of solvation of non-polar solutes, like argon, at room temperature is

negative. This has been discussed extensively starting with the early studies of Eley
(1939a, b) and also Frank & Evans (1945) on the solubility of non-polar gases in
water. The negative entropies of solvation of a non-polar solute were ascribed to the
formation of ice-like patches in solution in the vicinity of the solute. More recently,
computer simulations of simple non-polar solutes in water at room temperature reveal
the presence of a hydrogen-bonded cage around a non-polar solute in water at ambi-
ent temperatures. Since the energy of solvation of a non-polar solute is small, the
negative solvation entropy dominates the free energy (∆Asolv = ∆Usolv −T∆Ssolv ≈
−T∆Ssolv) rendering the solvation of a non-polar solute unfavourable in water at
room temperature. This situation is described as hydrophobic solvation. The solva-
tion free energy of polar and ionic solutes is, by contrast, dominated by the favourable
enthalpy of solvation.
The solvation of an ion or polar solute is further characterized by its dynam-

ics. Experimentally, the dynamics is inferred from time-delayed fluorescence shift
(TDFS), spectroscopy in which the response of the solvent to the instantaneous
polarization or charging of a fluorescing probe is followed with time (Jiminez et al .
1996; Rosenthal et al . 1994; Walker et al . 1992; Hornig et al . 1995; Maroncelli et
al . 1989). Computer simulations also provide another route to solvation dynamics
(Maroncelli & Fleming 1990; Vijaykumar & Tembe 1991; Perera & Berkowitz 1992;
Neria & Nitzan 1992; Re & Laria 1997; Ladanyi & Maroncelli 1998; Koneshan et al .
1998a, b). In this method, an uncharged solute is equilibrated in a computer model
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of a solvent like water, and the ion solvent electrostatic energy Usolv(t) is followed
as a function of time, immediately after switching on a charge ±q on the solute.
The same technique can be used to follow the solvent dynamics around a newly cre-
ated dipolar solute. The function S(t), which describes solvation dynamics, is defined
by

S(t) =
〈Usolv(t)〉 − 〈Usolv(∞)〉
〈Usolv(0)〉 − 〈Usolv(∞)〉 , (2.3)

where 〈·〉 denotes an ensemble average. Figure 1 shows plots of S(t) for various ions
as a function of time determined at room temperature in computer simulations of
the ions in water using the simple point charge model (SPC/E) for water carried out
by Koneshan et al . (1998a, b), described further in § 3.
The response at room temperature consists of a rapid drop on a time-scale of

ca. 25 fs followed by slow, oscillatory long-term relaxation over 1–5 ps. The initial
phase in the solvent response S(t) is attributed to fast librational motion of the
solvent molecules accompanied by small amplitude oscillations. This is followed by
translational and diffusive motions at longer times that account for the slower relax-
ation on a picosecond time-scale. The short-time solvation dynamics is different for
positive and negative ions and depends on their size. The oscillations reflect the
rotational and librational motion of the solvent molecules in readjusting to instan-
taneous charging of an ion. The long-time solvent response is a solvent property
at a given temperature and is independent of the properties of the solute. This
portion when fitted to an exponentially decaying function of time yields a charac-
teristic relaxation time of ca. 0.5 ps at 298 K. The theory of the solvation dynam-
ics of ions and polar solutes has been a very active field, developed independently
by several workers (Wolynes 1987; Calef & Wolynes 1983; Nichols & Calef 1988;
Rips et al . 1988a, b; Rips 1994; Bagchi & Chandra 1989; Bagchi 1989; Raineri et al .
1991, 1994, 1996; Raineri & Friedman 1994; Friedman et al . 1995; Maroncelli et al .
1993).
An important transport property that is modulated by the response of the solvent

to a moving charge is the mobility ui of an ion in aqueous solution (Robinson & Stokes
1959). This is just the drift velocity 〈vi〉 per unit electric field E, with ui = 〈vi〉/E
at low fields, when the response of the ion to the field is linear. In this region, the
mobility of an ion is also related to the diffusion coefficient Di in the absence of a
field through the Stokes–Einstein relation:

ui =
qiDi

kT
. (2.4)

Here k is Boltzmann’s constant and T is the temperature in kelvin. The diffusion
coefficient of an ion or uncharged solute is calculated from the asymptotic slope of
the mean square displacement,

Di = 1
6 lim

t→∞
d|(ri(t)− ri(0))|2

dt
, (2.5)

or from the integral of the velocity autocorrelation function:

Di =
1
3

∫ ∞

0
〈vi(t) · vi(0)〉dt. (2.6)
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Figure 2. Ion conductivity at 298 K as a function of the
crystallographic radius Ri (from Frank 1966).

Experimental results of ion mobility ui are reported as the molar ionic conductance,

λi = FNAui, (2.7)

where NA is Avogadro’s number and the Faraday constant F is equal to 96 500 C.
At infinite dilution, interactions between the ions are absent and each ion moves

independently of the others. This is Kohlrausch’s law of independent migration. The
conductance at infinite dilution is the sum of the conductivities of the ions:

Λ0 = ν+λ
0
+ + ν−λ0

−, (2.8)

where ν+ and ν− are the stoichiometric coefficients that appear in the chemical
equation for the dissociation of the electrolyte in solution.
The transport number of an ion at infinite dilution measures the fractional contri-

bution of the ion to the total conductance, and can also be measured experimentally.
Thus, the transport number of a positive ion is

t+ =
λ0

+

Λ0 , (2.9)

with an analogous definition for t− with t+ + t− = 1. The mobilities of individual
ions at infinite dilution follow from equations (2.8) and (2.9) and measurements of
ion transport numbers and electrolyte conductivity.
Figure 2, from a paper by Frank (1966), shows the experimental λ0

i of positive
and negative ions at room temperature plotted as a function of the crystallographic
radius Ri of the ion.
A distinctive feature of this figure is that positive and negative ions lie on sepa-

rate curves; each exhibiting its own maximum. It is strikingly clear that the smallest
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and largest ions move more slowly than ions of intermediate size. The asymmetry in
the mobilities of cations and anions immediately rules out a theoretical explanation
based on a continuum description of water or representations of water as a molecule
containing only an electric dipole or one with a perfect tetrahedral charge distri-
bution of positive and negative charges. These models fail because their inherent
symmetry cannot distinguish between positive and negative ions of the same size in
solution. They do not contain a description of hydrogen bonds, which are essentially
asymmetrical and play an important role in the properties of water.
The mobility of an ion at infinite dilution is determined by its interaction with the

solvent and how this is coupled with interactions between solvent molecules. Both
the energy and dynamics of these interactions are important. Theoretical discussions
of diffusion and ion mobility are usually expressed in terms of the friction coefficient
ζ, which is inversely proportional to the diffusion coefficient:

ζ = kT/Di. (2.10)

(a) Continuum theory

We begin with a discussion of continuum models, although it is not at all clear that
they are applicable at the molecular level. The frictional resistance to the motion
of an uncharged solute in a continuum solvent is entirely viscous, or hydrodynamic,
and is assumed to follow Stokes’s law:

ζV = KηRi. (2.11)

Here ζV is the hydrodynamic friction, Ri is the radius of the solute, η is the solvent
bulk viscosity, and the constant K is 6π or 4π, depending on whether stick or slip
boundary conditions are used at the solute–solvent surface. Assuming stick boundary
conditions, the diffusion coefficient of the uncharged solute

Di,0 =
kT

6πηRi
, (2.12)

where the subscript ‘i, 0’ implies zero charge on species i.
The electric field at the surface of large monovalent ions is relatively weak and

their diffusion coefficients are also dominated by hydrodynamic friction. Examples
are the large tetraalkyl ammonium ions Pr4N+ and Bu4N+. Hydrodynamic friction
and the Stokes–Einstein relation leads to the following simple relation for the molar
ionic conductivity by combining equations (2.4), (2.7) and (2.12):

λ0
i =

|zi|F 2

6πηRi
. (2.13)

Here zi is the valence of the ion, the superscript ‘0’ implies infinite dilution, and F
is the Faraday constant. The Stokes law form of the hydrodynamic friction implies
that the electrical conductivity increases as the ion size decreases. This behaviour is
found only for large ions and does not apply to smaller ones, as illustrated in figure 2.
The molar conductivity of small ions actually decreases with the radius, and the

conductivity of ions passes through a maximum as a function of size, signalling the
failure of Stokes’s law for small ions. One explanation for this breakdown is that
the intense field in the vicinity of a small ion produces a tightly bound solvation
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shell that moves along with the ion making it act like a large one. This is the classic
‘solventberg’ picture, which provides a plausible explanation for the low mobility of
the Li+ ion, since there is evidence that the water of hydration in the first shell is
held firmly with a residence time of nearly 51 ps. Accordingly, the conductivity of
Li+ fits the Stokes law expression for an ion whose radius is the sum of the radii of
the bare Li+ and a water molecule. The solventberg picture fails, however, to account
for the mobility of the Cl− ion, which has a smaller residence time of ca. 13 ps and an
effective solvated ion radius that is too large to account for its mobility on the basis
of Stokes’s law. The same model also fails to explain the mobilities of intermediate
size ions like Na+, Cs+ and Br− at room temperature. The Li+ is accordingly a very
special case because of its very small size and long-lived solvation shell.
An explanation of the mobilities of ions of varying size requires consideration of

friction of a different kind, called dielectric friction, in addition to the hydrodynamic
friction represented by Stokes’s law. Ions moving in a polar solvent experience a
frictional drag arising from the relaxation of the solvent polarization that does not
instantaneously follow the moving ion. The dynamics of ion solvation and its relation
to size should play a part in determining the magnitude of this term.
The subject of dielectric friction has been the focus of recent theoretical and com-

putational studies and has been controversial (Koneshan et al . 1998a, b; Kumar &
Maroncelli 2000). The first continuum description of dielectric friction was due to
Born (1920), and it was followed by increasingly more sophisticated treatments by
Fuoss (1959), Boyd (1961), Zwanzig (1963, 1970), Hubbard and co-workers (Hubbard
1978; Hubbard & Onsager 1977; Hubbard & Kayser 1981, 1982) and Adelman and
co-workers (Chen & Adelman 1980; Nguyen & Adelman 1984). In Zwanzig’s theory,
which contains the essentials, the dielectric friction coefficient

ζD = B
q2(ε− ε∞)
R3

i ε(1 + 2ε)
τD, (2.14)

where B = 3
4 , τD is the Debye relaxation time, ε and ε∞ are the static and high-

frequency dielectric constants of the solvent, respectively, and q is the charge on the
ion. Dielectric friction calculated from this theory is symmetrical in the charge, since
it varies as the square of q and it is the same for positive and negative ions of the
same size Ri. The variation with ion size is rapid, since ζD is proportional to R−3

i .
The total friction is assumed to be the sum of the two contributions

ζ = ζV + ζD, (2.15)

where the first term is the hydrodynamic friction given by Stokes’s law, and the
second is the dielectric friction represented in Zwanzig’s theory by equation (2.14).
The solvent in this continuum theory is characterized by its viscosity η, the static
and high-frequency dielectric constants ε and ε∞, respectively, and a single relaxation
time τD. Since ζV is proportional to Ri and ζD is proportional to R−3

i , it follows that

ζ = C1Ri + C2R
−3
i =

C1R
4
i + C2

R3
i

, (2.16)

where C1 and C2 are constants determined by the properties of the solvent. Com-
bining this with the expression for the diffusion coefficient in terms of the friction in
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equation (2.10) we have

Di =
kTR3

i

C2 + C1R4
i
, (2.17)

which has a maximum at Rm
i = (3C)1/4, in which C = C2/C1 is related to the solvent

properties through η, ε0, ε∞ and τD and the charge q on the ion. The mobility of
the ion is easily determined from this expression and the Stokes–Einstein relation
(equation (2.4)). It leads to the following simple relation between the conductivity
of an ion and its radius:

λ0
i =

AR3
i

C +R4
i
, (2.18)

where

A =
|zi|F 2

6πη
.

The above expression for the ionic conductivity was first derived by Frank (1966),
who pointed out that it leads to a maximum in λ0

i as a function of ion size in
qualitative agreement with experiment. This maximum is at Rm

i = (3C)1/4, when

λ0,max
i = A(33/4/4)C−1/4 and C =

2
3
π

6

(
τ

η

)(
q2

ε0

)
ε0 − ε∞
ε0

,

assuming stick boundary conditions. Frank’s plot of λ0
i versus Ri is reproduced in

figure 2, in which the curve labelled B–F–B–Z stands for the Born–Fuoss–Boyd–
Zwanzig theory represented by equation (2.18). The agreement between theory and
experiment at room temperature is only qualitative unless, as Frank proposed, the
viscosity is treated as an adjustable parameter. Good agreement can be obtained
with the molar conductivities of the negative ions.
Chen & Adelman (1980) extended the continuum model further to include the

effects of local solvent structure and dynamics by using an effective hydrodynamic
radius RV defined by

1
RV

= (1−∆)
1
Ris

+∆
1
Ri

=
1
Ri

[
∆+ (1−∆)

Ri

Ris

]
(2.19)

and an effective dielectric radius RD defined by

1
R3

D
=
Ris

R4
i
f(∆,Ri/Ris, εloc). (2.20)

Here Ris is approximately equal to the size of the first solvation shell of the ion.
Within that shell is defined a local density ρloc, viscosity ηeff , dielectric constant
εloc, and the solvation function,

∆ =
ηρloc

ηeffρ
, (2.21)

in which η and ρ are the viscosity and density of the bulk solvent, respectively. The
solvation function ∆ is determined by the extent of ion solvation and has a value
lying between 0 and 1, corresponding to rigid solvation and no solvation, respec-
tively. The function f(∆,Ri/Ris, εloc) interpolates smoothly between fully solvated
and unsolvated limits, so that the recalculated hydrodynamic and dielectric friction
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also interpolate smoothly between these limits. Note that even if there is complete
desolvation in the sense that ∆ = 1, the dielectric radius may still be close to Ris
if there is dielectric saturation in the first shell. The effective hydrodynamic and
dielectric radii of an ion are both larger than the bare radius of small ions if they
are strongly solvated. This leads to the notion that the dielectric friction is relatively
weak for both very small and very large ions. It is weak for large ions because of
their size, and weak for small ions like Li+ which are strongly solvated, because the
moving entity is the large solvated species: this is the classic ‘solventberg’ picture.
A recent analysis of the friction coefficients of ions by Koneshan et al . (1998a) at
298 K supports this view.
These ideas have led to the notion that ionic friction can also be treated hydro-

dynamically in a semi-continuum theory using effective local and bulk viscosities
determined by solvent relaxation in different regions around the ion. This was clari-
fied further by a suggestion of Wolynes (1980) and Hubbard & Wolynes (1985) that
the friction coefficient can be written as

1
ζ
=

∫ ∞

Ri

dr
4πr2η(r)

. (2.22)

Here Ri is the bare ion radius and is the local viscosity equal to the bulk value η
at r = ∞. Impey et al . (1983) modelled the distance-dependent viscosity as a step
function, with

η(r) =

{
ηs Ri < r < Ris,

η r > Ris,
(2.23)

where Ris is the radius of the coordination shell within which the viscosity is ηs.
Substitution in (2.22) leads to

1
ζ
=

1
4πRi

F

(
η

ηs
,
Ri

Ris

)
, (2.24)

in which

F

(
η

ηs
,
Ri

Rc

)
=

{
η

ηs
+

(
1− η

ηs

)
Ri

Ris

}
. (2.25)

This is unity for an unsolvated ion when R1 = Ris and ηs = η. If we neglect elec-
trostriction and identify ηs with ηeff , (2.24) is identical to the Chen–Adelman expres-
sion for viscous friction. Impey et al . (1983) applied this model to the friction of ions
in aqueous solution at room temperature, and Balbuena et al . (1996, 1998) used a
similar model to interpret the mobilities of ions at supercritical temperatures.
The dielectric friction calculated in the continuum theory is proportional to the

square of the charge, and is the same for positive and negative ions of the same size
and charge magnitude. As noted already, this is contradicted by the experimental
data for ion mobility in aqueous solution at room temperature. The qualitative dif-
ference in mobilities of cations and anions at room temperature can be traced to the
charge asymmetry of the water molecule (Koneshan et al . 1998b), which requires a
more detailed molecular theory of ion mobility.

(b) Molecular theory

A molecular theory of friction can be derived by starting with the generalized
Langevin equation applied to ionic motion in a molecular solvent (Kubo et al . 1991;
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Balucani & Zoppi 1994). The fluctuation dissipation theorem leads to an expression
for the friction coefficient as the integral of the autocorrelation function of the random
force on the ion

ζ =
1

3kT

∫ ∞

0
〈Fi(t) · Fi(0)〉dt. (2.26)

Here T is the absolute temperature, k is Boltzmann’s constant, and Fi(t) is the
random force on ion i exerted by the solvent at time t. This expression is the starting
point of molecular theories of ionic friction beginning with Wolynes and co-workers
(Wolynes 1978; Colonomos & Wolynes 1979; Hubbard et al . 1979) and developed
further by Bagchi and co-workers (Biswas et al . 1995; Biswas & Bagchi 1997a, b;
Bagchi & Biswas 1998) and others. The first major assumption in the theory of
Wolynes is to equate the random force on the moving ion to the total force on a
fixed ion, which is equivalent to treating the ion as a heavy Brownian particle. The
second assumption is to decompose this force into hard and soft parts and neglect
the cross terms.
The potential of mean force on the ion is given by

wi(r) = −kT ln giw(r), (2.27)

where giw(r) is the orientationally averaged ion–water distribution function. This has
a maximum as a function of r, with the force to the left of the maximum identified
as repulsive or ‘hard’ and to the right identified as attractive or ‘soft’. Splitting the
force in this way into soft and hard parts subdivides the friction coefficient into three
contributions:

ζ = ζHH + 2ζSH + ζSS. (2.28)

The first term ζHH is the hard–hard contribution due to binary collisions between the
solute and the solvent. It is also identified with the viscous drag embodied in Stokes’s
law. The last term ζSS is the soft–soft term determined by structural rearrangements
of the solvent modulated by solvent dynamics. It is identified loosely with dielectric
friction, but this classification is open to debate, since dielectric friction may also
include contributions form the cross terms ζSH and ζHS, which are equal to each
other. Wolynes neglected the cross terms, arguing that the time-scales associated
with the hard and soft parts were widely different, and, in this approximation,

ζ ≈ ζHH + ζSS. (2.29)

This theory reduces to the continuum limit when the solute–solvent interactions
are weak and long ranged, and in the case of strong ion–solvent interactions to
the solventberg limit in which the ion moves with its hydration shell. As a first
approximation, Colonomos & Wolynes (1979) related ζSS to the static mean square
fluctuation 〈F 2

S 〉 of the soft force and its time dependence 〈τF〉 and found that

ζSS ≈ 1
3kT

〈F 2
S 〉τF. (2.30)

The molecular theory was further extended and developed for ions in a simple dipolar
fluid by Bagchi and co-workers (Biswas et al . 1995; Biswas & Bagchi 1997a, b; Bagchi
& Biswas 1998), who retained the two main assumptions in the theory of Wolynes:
namely the Brownian limit assumption and the neglect of the cross terms ζSH and
ζHS. Their calculation of the soft contribution, ζSS, to the friction takes account of
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Figure 3. The components ζHH (hard–hard), ζSS (soft–soft) and ζHS (hard–soft) of the friction
coefficients of the sodium ion in water at 298 K calculated from computer simulations of a fixed
ion in SPC/E water (from Koneshan et al . 1998a, b).

the ultrafast solvent dynamics and the equilibrium solute–solvent correlations in the
mean spherical approximation. The results of calculations of the mobility of cations
in water, methyl alcohol and formamide are impressive, but the theory does not
distinguish between cations and anions in water due to the simple dipolar symmetry
of the model used for the solvent.
There is evidence from computer simulation studies of Wilson et al . (1985) that the

friction coefficient of Na+ in water calculated in fixed ion simulations is 60% larger
than that calculated from the Stokes–Einstein relation and the diffusion coefficients
determined with the velocity autocorrelation function of the moving ion. Also, molec-
ular dynamics studies of Na+ and Cl− ions in water by Berkowitz & Wan (1987)
and Tembe and co-workers (Sirdhar et al . 1993; Sivaprasad et al . 1994) have shown
that the cross terms cannot be neglected, and this is confirmed in the more recent
simulations of Koneshan et al . (1998a) shown in figure 3.
A recent molecular theory of ionic friction proposed by Chong & Hirata (1998,

1999a), using an interaction site model for the solvent and solute, considers a different
separation of the random force autocorrelation function than the one used byWolynes
and others in which the cross terms are not neglected.
To summarize, the characteristic properties of the mobility or diffusion coefficients

of ions and uncharged solutes that need explanation are

(i) the distinct curves for positive and negative ions;
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(ii) the dependence on ion size with a characteristic maximum for each charge type;

(iii) the dependence on solvent structure and dynamics as determined by the equi-
librium correlation functions and solvation dynamics; and

(iv) the dependence on charge, i.e. the difference in behaviour between the diffusion
coefficients of charged and uncharged species of the same size.

Associated with this explanation is the identification of a minimal model for water
that explains the differences between positive and negative ions at room temperature.
In what follows we discuss molecular dynamics simulations of ions in aqueous

solution at infinite dilution. We identify a minimal model that accounts for the
diffusion coefficients of charged and uncharged species dissolved in water at infinite
dilution and the asymmetry in the free energy and entropy of solvation as a function
of charge sign. The minimal model must of course incorporate the charge asymmetry
of the actual water molecule. Fortunately, such models already exist; it is their ability
to explain these phenomena that was not apparent until recently. The SPC/E model
for water described in the next section satisfies these minimal requirements. Recently,
Chong & Hirata (1999b) have used the same model in their theory to predict the
mobilities of simple cations and anions in aqueous solution at room temperature. It
is the first molecular theory to explain the differences in the mobilities of cations and
anions of the same size in aqueous solution.

3. Computer simulation studies of the dynamics of
ions in water at infinite dilution

Many convenient and useful potential energy functions for the interactions between
two water molecules are available, such as three-, four- and five-site TIPS functions.
The advantage of the SPC/E model with corrections for polarization discussed in this
section lies not only in its accuracy and convenience, but in the simple extension of
the same model to describe ion–water interactions with parameters fitted consistently
to an experimental property. A consistent set of potential parameters for the simple
cations and anions in water is of special importance in comparing differences in
structural and dynamical properties of a family of ions that differ primarily in their
sizes.
In the SPC/E model, a water molecule is treated as a collection of point charges

distributed over the atomic sites with Lennard–Jones interactions between the oxygen
atoms (Berendsen et al . 1987). The OH bond distances are fixed at 1.0 Å, and the
bond angle between the two OH bonds of the water molecule is held at the tetrahedral
angle of 109◦ 47′. The intermolecular interaction between two water molecules has
the form

uwater = 4εoo

[(
σoo

roo

)12

−
(
σoo

roo

)6]
+

1
4πε0

3∑
i=1

3∑
j=1

qiqj
rij

. (3.1)

The first term in this equation is the Lennard–Jones potential between the oxygen
sites of distinct water molecules and the second is the electrostatic term in which
qi is the charge on site i, rij is the distance between sites i and j on two different
water molecules, and ε0 is the permittivity of free space. The parameters for this
potential were determined by Berendsen et al . (1987) and are given in table 1. The
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Table 1. Halide–water, alkali-metal cation–water and water–water
potential parameters (SPC/E model)

(In the SPC/E model for water, the charges on H are at 1.000 Å from the Lennard–Jones centre
at O. The negative charge is at the O site and the HOH angle is 109.47◦. The Li+ parameters
are for the revised polarizability (RPOL) model.)

ion/water σio (Å) εio (kJ mol−1) charge (q)

F− 3.143 0.6998 −1
Cl− 3.785 0.5216 −1
Br− 3.854 0.5216 −1
I− 4.168 0.5216 −1
Li+ 2.337 0.6700 +1
Na+ 2.876 0.5216 +1
K+ 3.250 0.5216 +1
Rb+ 3.348 0.5216 +1
Cs+ 3.526 0.5216 +1
Ca2+ 3.019 0.5216 +2

SPC/E σoo (Å) εoo (kJ mol−1) charge (q)

O(H2O) 3.169 0.6502 −0.8476
H(H2O) +0.4238

molecular dipole moment of SPC/E water is 2.35 D. This is larger than the dipole
moment of a free water molecule (1.85 D) but smaller than the estimated dipole
moment of water in ice, which is 2.6 D. The increased effective dipole moment of water
in the liquid phase reflects the polarization of the molecule due to its neighbours.
Guissani & Guillot (1993) and Guillot & Guissani (1993) determined the liquid–
vapour coexistence curve for this model by computer simulation and found the critical
parameters (Tc = 640 K, ρc = 0.29 g cm−3 and Pc = 160 bar). Except for the critical
pressure, they are in good agreement with the critical parameters for real water
(Tc = 647 K, ρc = 0.322 g cm−3 and Pc = 221 bar). The dielectric constant ε is 81
at 300 K and ca. 6 at 640 K, which agrees with the measured values of 78 and 5.3,
respectively.
The SPC/E model has been used extensively over the past few years in computer

simulation studies of the thermodynamic and transport properties of water (Berend-
sen et al . 1987) and ions in solution (Lynden-Bell & Rasaiah 1997; Koneshan et
al . 1998a, b) and the results are in accord with the experimental results at room
temperature. For example, a peak in the oxygen–hydrogen distribution functions
goh(r) at 1.8 Å, followed by a minimum at 3.3 Å, and a second peak at 4.5 Å, in the
oxygen–oxygen distribution functions goo(r), which is the signature of tetrahedral
coordination, are observed in simulations of SPC/E water. The diffusion coefficient
of SPC/E water at 25 ◦C also agrees well with the experimental result (Berendsen
et al . 1987).
The ion–water potential used in our studies has a similar form:

uio = 4εio

[(
σio

rio

)12

−
(
σio

rio

)6]
+

1
4πε0

3∑
i=1

3∑
j=1

qiqj
rij

. (3.2)
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Figure 4. The normalized velocity autocorrelation functions of cations and anions
in SPC/E water at 298 K calculated by computer simulation.

Here εio and σio are the Lennard–Jones parameters for the interaction between the
ion and the oxygen atom ‘o’ of a water molecule, while the Coulomb term incorporates
the electrostatic interactions between the charges on the oxygen and hydrogen sites
of a water molecule and the charge on an ion. Dang and co-workers (Dang 1992a, b,
1995a, b; Dang & Garrett 1993; Dang & Kollmann 1995) fitted the parameters for this
ion–water potential to the heats of solvation of small ion–water clusters containing
from one to about 15 water molecules. The ions were the alkali-metal cations (Li+,
Na+, K+, Rb+ and Cs+), the halide anions (F−, Cl−, Br− and I−) and the divalent
calcium (Ca2+) and strontium (Sr2+) ions. The parameters taken from Dang’s papers
are reproduced in table 1.
Molecular dynamics simulations of a single ion and 215 water molecules at room

temperature (298 K) and a larger number (512) of water molecules at 683 K were
carried out in the canonical ensemble with a time-step of 1 fs and a reaction field to
take account of the long-range interactions (see Allen & Tildesley 1987; Frenkel &
Smit 1996). The size of the cubical box was adjusted to the required density of water,
which was 0.997 g cm−3 at 25 ◦C and 0.32, 0.2 and 0.997 g cm−3 in the supercritical
region at 683 K. The simulations provide structural and dynamical information about
a single ion and its interaction with the surrounding water molecules. The reader is
referred to the original publications for further details. The diffusion coefficients were
determined either from the mean square displacements or the velocity autocorrelation
functions (Rasaiah et al . 2000; Noworyta et al . 2000) shown in figure 4 and found to
be in good agreement with each other.
The most significant finding is that the diffusion coefficients and mobilities of

the ions at 25 ◦C fall on two separate curves as a function of their ion size with
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Figure 5. Ion mobility (units of 10−8 m2 V−1 s−1) as a function of the crystallographic radius
R in angstroms calculated from computer simulations of anions (◦) and cations (�) in SPC/E
water. The experimental results are shown as filled circles (•) (from Koneshan et al . 1998a, b).

a maximum for each charge type. It is evident from figure 5 that a plot of the
mobility, ui, versus the Lennard–Jones parameter, σio, follows the same pattern as
the experimental results.
Simply changing the charge on an I− ion from negative to positive to generate an

I+ ion, keeping the Lennard–Jones ion–water parameters for I− and I+ unchanged,
allows the range of cation sizes to be extended. The I+ represents a purely fictitious
large cation.
In an analogous way, turning off the charges on ions generates a family of uncharged

solutes or ‘drones’, whose diffusion coefficients can be determined from the mean
square displacement in the usual way. The diffusion coefficients of the ions and
uncharged solutes are displayed in figure 6 as a function of the Lennard–Jones param-
eter σio.
Two important conclusions emerge from this study.

(a) With the possible exception of the smallest solute Li0, Stokes’s law is obeyed by
neutral atomic sized solutes moving in water, even though the solvent molecules
have a comparable size with the solute. This is seen in the plot of the friction
coefficient as a function of solute size σio shown in figure 7. The viscosity of
SPC/E water at 25 ◦C calculated from the slope of the Stokes law plot in
figure 6 assuming slip boundary conditions is 1.73 × 10−3 kg m−1 s, which is
within a factor of two of the experimental result (0.89 × 10−3 kg m−1 s) for
pure water at 25 ◦C.

(b) Turning off the charge on the small ion Li+ increases its diffusion coefficient,
while the opposite is true for the large ions I− and I+. The behaviour of Li is
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Figure 6. Diffusion coefficients (units of 10−9 m2 s−1) of cations (�), anions (◦) and uncharged
solutes or ‘drones’ (�) at 298 K as a function of the size represented by the Lennard–Jones
parameter σio. The curves are drawn as an aid to the eye (from Koneshan et al . 1998a, b).

easily understood in terms of the solventberg picture. The lithium ion loses its
tightly bound solvation shell when stripped of its charge, reducing its size and
making it able to move faster in solution, as predicted by Stokes’s law. The
behaviour of large solutes, e.g. I−, after charge neutralization presents a puzzle
that led to a detailed study of the structure and dynamics of the solvation ions
and neutral species.

The ion–oxygen pair distribution function gio(r) is related to the probability that
the oxygen atom of a water molecule resides at a distance r from an ion. Figure 8
shows the ion–oxygen pair distribution functions for I−, and the fictitious I+ and
I0 determined by computer simulation. The uncharged I0 has a prominent peak,
and visual inspection of an equilibrated configuration of water in the first hydration
shell reveals a cage around the solute held together by hydrogen bonds. This is
hydrophobic solvation.
The charge asymmetry of the water molecule accounts for the difference in the

solvation of positive and negative ions, particularly due to the orientation of water
molecules in the first shell. The oxygen atom of a water molecule in the hydration
shell of a cation lies closer to the ion than do the hydrogen atoms, while for anions
one of the two hydrogen atoms of the water of hydration is closer than the oxygen.
In the latter case the water hydrogen forms a hydrogen bond to the anion, and it
is evident from figure 8 that this difference in the ion–water interaction allows the
oxygen to approach I− more closely than the fictitious I+.
The coordination number Nh of the solute is obtained as a volume integral of

solute (s) or ion (i)–oxygen pair distribution function gio(r) from the relation

Nh = ρw

∫ Rh

0
gio(r)4πr2 dr. (3.3)
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Figure 7. Friction coefficients (kg s−1) versus size σio for uncharged solutes in SPC/E water at
298 K, showing that the Stokes law is obeyed reasonably well by uncharged solutes of atomic
size with the possible exception of the smallest (Li0). The solid line corresponds to Stokes’s law
(from Koneshan et al . 1998a, b).

Here Rh is the position of the first minimum in the pair distribution function, and
ρw is the number density of the solvent. The coordination numbers in the primary
solvation shells of I−, I+ and I0 at 25 ◦C and a solvent density of 0.997 g cm−3 are
ca. 8, 25 and 27, respectively. This means that the uncharged I0 is more heavily
hydrated than the ions I− or I+. The hydration numbers of ions and ‘drones’ are
plotted as a function of size in figure 9, which shows that they increase with solute
size.
The dynamics of the hydration shells are characterized by the residence time τres

of water in the shells, defined as

τres =
∫ ∞

0
R(t) dt, (3.4)

where R(t) is the residence time correlation function introduced by Impey et al .
(1983) and defined by

R(t) =
1
Nh

Nh∑
i=1

〈θi(t)θi(0)〉, (3.5)

in which θ(t) is the Heaviside step function that is 1 if the water molecule i is in
the coordination shell of the ion at time t and zero otherwise. The residence time
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Table 2. Average coordination numbers and residence times (ps) of water in the primary
hydration shell of an ion and the corresponding discharged species in SPC/E water at 25 ◦C

(The residence times in parentheses are calculated from the residence time correlation function,
which does not allow for a 2 ps excursion time.)

hydration residence
ion number time (ps)

F− 6 24 (24)
F 17 19 (16)

Cl− 7 17 (13)
Cl 23 22 (18)

Br− 8 13 (11)
Br 23 26 (20)

I− 8 14 (9)
I 27 28 (24)
I+ 25 21 (19)

Li+ 4 54 (51)
Li 11 8 (4)

Na+ 6 22 (20)
Na 13 13 (9)

K+ 7 14 (9)
K 18 18 (14)

Rb+ 8 12 (10)
Rb 19 20 (17)

Cs+ 8 14 (10)
Cs 20 20 (16)

Ca2+ 8 700 (700)
Ca 16 14 (10)

H2O 4.4 5.6
(SPC/E)

correlation functions of I0, I+ and I− are shown in figure 10, and the hydration
numbers and residence times of different ions and uncharged solutes at 298 K are
displayed in table 2. All the ions and neutral solutes have residence times at this
temperature that are larger than the residence time of water in its first coordination
shell.
A plot of τres as a function of the size parameter σio (shown in figure 11) reveals

a minimum for cations as the size increases, signalling a crossover from hydrophilic
to hydrophobic solvation for positive ions. The residence times for anions decrease
with their size, while those for uncharged molecules increase with size.
The order of the residence times for charged and uncharged iodine is

τres(I0) > τres(I+) > τres(I−),

which is the reverse of the order of the diffusion coefficients:

D(I0) < D(I+) < D(I−).
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These trends suggest that hydrophilic electrostatic solvation of a small ion is radically
different from the hydrophobic solvation of an uncharged solute enclosed in a cage
of water molecules held together by hydrogen bonds. The cage around I0 is partly
broken when the solute is charged, enabling the ion to move faster and accounting
qualitatively for the increase in diffusion coefficient of I− over I0. Comparison of the
diffusion coefficients of I+ and I− and the corresponding residence times (25 ps for I+
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(b) The figures belong to q = 0, +1 and −1 (from Lynden-Bell & Rasaiah 1997).

versus 8 ps for I−) suggests that I+ hydration is still largely hydrophobic, while the
hydration of I− has a greater degree of hydrophilic character to it. This is explained
by the close proximity and orientation of water in the first shell of the anion I−,
in contrast to the water of hydration of I+. It also suggests a possible correlation
between the diffusion coefficients and the thermodynamics of hydration of ions of
varying charge and sign discussed in the next section.

4. Computer simulation of the thermodynamics of ion solvation

The molecular nature of the solvent causes deviations from the simple Born model
described in § 2. Computer simulation shows effects which can be associated with
hydrophobicity and hydrophilicity. The predictions of the Born model are that the
free energy, entropy and internal energy are simple parabolic functions of the charge
and reciprocal functions of the ion radius. The change in solvation free energy
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Asolv(q, σ) of a Lennard–Jones sphere as a function of the charge q and the size
σ can be measured by a number of techniques, such as the extended dynamics used
by Lynden-Bell & Rasaiah (1997). The internal energy changes can be measured
directly, although the results tend to be somewhat noisy. The entropy of solva-
tion is then found from the difference. Figure 12 shows the free energies of solva-
tion plotted as a function of the charge (above) and size (below). The asymmetry
between the positively charged ions and the negatively charged ions is clear in both
parts. In the upper part the curves are steeper for negative values of the charge
than for positive values, while the curves for constant charge shown below show
that the free energy of solvation of positive ions is only ca. 50% of that of negative
ions.
The reason for this can readily be found by examining the orientations of the water

molecule in the first shell of the solute (Impey et al . 1983; Bergmann et al . 1999).
The water around positively charged ions preferentially aligns with their dipole axis
pointing in the radial direction, while negatively charged ions interact preferentially
with one of the two protons of a water molecule, so that it is an OH bond rather
than the dipole moment that is aligned along the radial direction.
This asymmetry between the solvation of positive and negative ions is due to the

fact that negative ions act as strong hydrogen bond acceptors, while positive ions
cannot act as hydrogen bond donors.
The variation of the entropy (in units of Boltzmann’s constant k of solvation with

charge demonstrates the importance of the entropy in hydrophobicity. Figure 13
shows the variation of the solvation entropy with charge (above) and size (below).
The striking aspect of these curves is the appearance of maxima. In particular

there is a double maximum in the entropy versus charge which is quite different to
the single maximum at zero charge predicted by the Born model and shows the spe-
cial properties of water as a solvent. The entropy minima near q = 0 are signatures of
the hydrophobic effect, which is associated with an abnormally high negative entropy
of solvation. The water molecules in the first shell around a hydrophobic solute are
arranged with their dipole moments tangential to the solute so that they can hydro-
gen bond to each other. As the magnitude of the solute charge is increased, these
water molecules rotate, disrupting the water network and initially increasing the
entropy. As the magnitude of the charge is increased further, the order induced by
the electric field of the solute outweighs the disorder caused by disrupting the net-
work, so that the entropy of solvation decreases. It is possible to use simulation to
probe these observations in more detail. Bergmann et al . (1999) measured the two-
body solute–water contributions to the solvation entropy and found that, although
they are dominant at high charges, they do not give a hydrophobic minimum at low
charges. This supports the idea that the hydrophobic effect is a consequence of the
water–water network structure.
The entropy maxima, where there is most structure, are more pronounced for

negative charges than for positive charges and shift to higher magnitudes of the
charge when the solute size is increased. One might expect that the points of max-
imum structure breaking are places where the first shell is most disrupted. In fact
this is not easy to demonstrate (Bergmann et al . 1999). One can, however, cor-
relate the maximum entropy with the disappearance of the second shell in the
solute oxygen radial distribution function. This is shown in the central traces of
figure 14.
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The upper curves in this figure show the distributions around charged ions, while
the bottom curves show the distribution around hydrophobic solutes. The separation
between the first and second shells changes from 3 Å to just over 2 Å for q = +1
to q = −1. This reflects the water structure around hydrophilic and hydrophobic
solutes.

5. Supercritical water

We conclude this review with a brief account of our studies of ions and simple non-
polar solutes dissolved in supercritical SPC/E water at a temperature of 683 K, which
is nearly 40 K above the critical temperature of real water and the model SPC/E
water. The critical density of water is nearly 0.32 g cm−3. Supercritical water is
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characterized by large density fluctuations with voids continually forming and filling
up, particularly at low density (Tucker 1999). Water is highly compressible in this
region, and the density is easily fine tuned by changing the external pressure.
Recent computer simulation studies (Rasaiah et al . 2000; Noworyta et al . 2000)

show that the hydration numbers of small ions (e.g. Li+, Na+) at 683 K and a solvent
density of 0.35 g cm−3 are nearly the same as the corresponding values at 298 K and
a solvent density of 0.997 g cm−3. They are weakly dependent on the solvent density
over the range 0.2–0.997 g cm−3 at high temperatures and become slightly smaller
as the density decreases. In contrast to this, the residence times of water in the
primary hydration shells of ions are lower by an order of magnitude at 683 K than
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at 298 K, and again weakly dependent on size. This implies that the structure of the
hydrophilic solvation shells of small ions does not change much with temperature,
but their dynamics depends strongly on the temperature. On the other hand, the
hydration numbers of hydrophobic solutes and the residence times of the water of
hydration depend strongly on temperature and solvent density.
The angularly averaged solute–water pair correlation functions in supercritical

water are qualitatively different for ions and uncharged solutes, with water expelled
from the region next to the uncharged solute, but compressed by the electric field in
the neighbourhood of a small ion. This is reflected in the partial molar volumes V̄∞

2
of ions and uncharged solutes, which are large and opposite in sign. V̄∞

2 is positive
for uncharged solutes and negative for ions and can be understood from the relation

V̄∞
2 = kTκT [1− ρ1C

∞
12 ], (5.1)

which follows from the Kirkwood–Buff theory of solutions (Kirkwood & Buff 1952).
Here, κT is the compressibility of the solvent, ρ1 is the solvent density and C∞

12 is
the integral of the solute–solvent direct correlation function, which is related to the
corresponding pair correlation function through the generalization of the Ornstein–
Zernike equation for a two-component system. The compressibility κT is always
positive and diverges at the critical point, which explains the large magnitude of the
partial molar volumes in the supercritical region. The sign of the quantity in square
brackets determines the sign of the partial molar volume. A useful approximation,
for non-polar solutes, is to replace C∞

12 by the second cross virial coefficient (Brelvi
& O’Connell 1972; O’Connell 1981, 1994). This can be further approximated by the
second virial coefficient of hard spheres, when the agreement of the calculated V̄2
with the simulations is quite good (Rasaiah et al . 2000).
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Figure 16. Solute–oxygen pair correlation functions for I0 at 289 K and a solvent density
of 0.997 g cm−3 compared with the corresponding results at 683 K at solvent densities of
0.35 g cm−3 and 0.997 g cm−3 (from Rasaiah et al . 2000).

The ion diffusion coefficients, determined by molecular dynamics simulation, are
larger in magnitude at 683 K than at 298 K. They vary little with ion size at a solvent
density of 0.35 g cm−3 and are nearly the same for cations and anions (Noworyta et
al . 2000). This agrees with the experimental studies of Wood et al . (1995) and of
Marshall and co-workers (Quist & Marshall 1968). Figure 15 shows the diffusion
coefficients of ions and uncharged solutes at 683 K as a function of the size of anions
(Noworyta et al . 2000), which should be compared with the corresponding diffusion
coefficients at 298 K displayed in figure 6. The weak dependence on charge and
size suggests that the mechanism of diffusion under supercritical conditions is quite
different from what it is at room temperature.
In contrast to hydrophilic solvation, the hydrophobic hydration of a non-polar

solute (or large ion) is sensitive to changes in both temperature and solvent density.
This is strikingly clear in the solute–oxygen pair correlation for I0 at 298 K and 683 K
and at two different solvent densities (0.32 g cm−3 and 0.997 g cm−3) displayed in
figure 16.
The peak in the solute–solvent pair correlation function that is quite prominent

at 298 K disappears at 683 K when the solvent density is close to the critical value
of 0.32 g cm−3, but is restored when the density is increased to 0.997 g cm−3. This
suggests a correlation with the solvent density rather than with the temperature.
Furthermore, the characteristic behaviour of ions and uncharged solutes at room
temperature (figure 6) that is absent at 683 K and a solvent density of 0.35 g cm−3

(figure 15) reappears when the solvent density is increased to 0.997 g cm−3, as shown
in a recent study (Noworyta et al . 2000). The diffusion coefficients of positive and
negative ions lie on separate curves with distinct maxima when plotted as a function
of size and small uncharged solutes diffuse faster than ions of the same size, while the
opposite is true for large solutes. This implies that the dynamics of ions and neutral
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Figure 17. Snapshots of 0.5 molal and 1 molal NaCl aqueous solutions at 683 K. The oxygen
and hydrogen atoms in water are represented as red and grey circles, respectively. Na+ ions are
represented in blue, and Cl− ions in green. Note the presence of a single NaCl cluster in the
1 molal NaCl solution (b), whereas in the 0.5 molal NaCl solution there are three different NaCl
clusters (a). The solvent density is 0.35 g cm−3 (from Koneshan & Rasaiah 2000).

solutes in aqueous solutions of supercritical water correlate with the solvent density
as well as the temperature.
The dielectric constant of water is ca. 5 at 683 K and a density of 0.35 g cm−3.

Electrolytes are less soluble at high temperatures and multiple-ion association and
cluster formation are predicted in supercritical aqueous electrolyte solutions (Brelvi
& O’Connell 1972; O’Connell 1981, 1994). As noted earlier, the SPC/E model for
water has critical parameters and dielectric constants close to those measured for
real water. Computer simulations of aqueous sodium chloride solutions using the SPC
(Cui & Harris 1995; Reagan et al . 1999) and SPC/E models confirm lower electrolyte
solubility at elevated temperatures, and show that the individual diffusion coefficients
and ion mobilities decrease with increasing electrolyte concentration (Koneshan et
al . 2001; Koneshan & Rasaiah 2000; Rasaiah et al . 2000; Noworyta et al . 2000). They
also confirm the presence of a distribution of clusters of positive and negative ions of
varying size in which some ions are bridged by water molecules. There is an overall
decrease in hydration numbers of the ions. Cluster formation between ions goes well
beyond simple pairing of oppositely charged ions as predicted by Oelkers & Hegelson
(1993). Sodium chloride solutions near saturation or super saturation (ca. 1 molal)
at 683 K contain large clusters of positive and negative ions moving together, so
that the diffusion coefficients of the individual ions Na+ and Cl− are nearly the
same (Koneshan & Rasaiah 2000). Figure 17 shows equilibrium configurations of
0.5 M and 1.0 M sodium chloride in which the multiple and single clusters bridged
by water molecules in these solutions are clearly visible.
The parameters of the SPC/E model were fitted to the equilibrium properties

of water at 298 K. This might seem to be a serious drawback to our discussion
of ionic solutions in the supercritical region in terms of this model. However, the
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SPC/E model predicts the critical parameters and the dielectric constant of water
in the supercritical region rather well. Improved models that incorporate the atomic
polarizability of the oxygen and hydrogen atoms in water and ions have been pro-
posed. Amongst these is the revised polarizability model (RPOL) developed by Dang
(1992b), which is a modification of the SPC/E model. Smith & Dang (1994) studied
the effect of this polarization on the potentials of mean force of sodium and chloride
ions at room temperature and found it to be small but measurable. Koneshan et
al . (2001) has shown that differences between the diffusion coefficients of ions calcu-
lated with the SPC/E and RPOL models are small at 298 K and also at 683 K. This
means that calculations of the transport properties of ions at infinite dilution using
the SPC/E at 683 K are not seriously compromised by the neglect of the temperature
dependence of the induced polarizability in this model.
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