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Gibbs ensemble simulations are reported for Lennard-Jones particles with embedded quadrupoles of
strengthQ*5Q/(es5)1/252.0 wheree and s are the Lennard-Jones parameters. Calculations
revealing the effect of the dispersive forces on the liquid–vapor coexistence were carried out by
scaling the attractiver26 term in the Lennard-Jones pair potential by a factorl ranging from 0 to
1. Liquid–vapor coexistence is observed for all values ofl includingl50 forQ*52.0, unlike the
corresponding dipolar fluid studied by van Leeuwen and Smitet al. @Phys. Rev. Lett.71, 3991
~1993!# which showed no phase transition belowl50.35 when the reduced dipole momentm*
52.0. The simulation data are analyzed to estimate the critical properties of the quadrupolar fluid
and their dependence on the strengthl of the dispersive force. The critical temperature and pressure
show a clear quadratic dependence onl, while the density is less confidently identified as being
linear in l. The compressibility is roughly linear inl. © 1997 American Institute of Physics.
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I. INTRODUCTION

Phase transitions and separations in polar fluids and
lar fluid mixtures are of special importance to industr
chemists and chemical engineers. It is also of great theo
ical interest to be able to characterize the nature of th
coexisting phases and to pinpoint the molecular proper
that lead to phase separation.

Thermodynamic perturbation theory has been the m
theoretical tool in these studies in which the excess free
ergyFex is expanded about a reference system of free ene
Fex,0

Fex5Fex,01z f 11z2f 21z3f 31••• , ~1.1!

wheref 1 , f 2 , and f 3 are integrals or the sums of integrals
the perturbing potentials of strengthz over two- and three-
body correlation functions of the reference system and
term ofO(z) vanishes if the reference system is spherica
symmetric. For example, the parameterz5m2 for a polar
fluid, wherem is the dipole moment. However, the free e
ergy expansion for dipolar and multipolar fluids oscillat
widely but is tamed by the Pade´ approximant

Fex~Padé!5Fex,01z2f 2 /~12z f 3 / f 2! ~1.2!

of Stell, Rasaiah, and Narang~SRN!.1 This approximation
has been found to be useful in mapping the phase bound
of simple polar fluids and their mixtures although it provid
only mean-field critical exponents.

In comparing theory with experiments on real or mod
fluids, the reference system is often represented by
spherically symmetric Lennard-Jones potential

ui j ~r !54e@~s/r !122~s/r !6#, ~1.3!
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wherer5ur i j u is the distance betweeni and j and the per-
turbation is due to dipole and multipole interactions. It w
thought until recently that the presence of the dispers
London term represented by (s/r )6 is not essential2 since the
integrandin f 2 is proportional to 1/r

6. This arises from two
dipole bonds in parallel with the reference correlation fun
tion g0(r ) in the graphical expansion of the free energy.

It came as a surprise when Gibbs ensemble and o
simulations showed the dispersive term is required and
no liquid–vapor phase transition occurs, for example, in
hard-sphere dipolar fluid.3,4 This also implies that the appli
cation of the Pade´ approximant to hard spheres plus dipol
to map the coexisting phase boundaries is fundament
flawed since it predicts phase separation. In particular,
widely quoted application of the SRN theory to dipolar ha
spheres by Rushbrookeet al.5 to predict the two phase regio
is at odds with these Gibbs ensemble simulations.

By modulating the dispersion force with a factorl ~be-
tween 0 and 1! in the pair potential

ui j ~r !54e@~s/r !122l~s/r !6#, ~1.4!

it was found that no phase transition occurs belowl50.35
when the reduced dipole moment is 2.0. These results c
from Gibbs ensemble simulations of a dipolar fluid.3 Micro-
scopic pictures of the system pinpoint the absence of a t
sition as due to the formation of polymers of dipolar cha
when the dispersion force is weak or absent. Several o
studies also seem to lend support these conclusions.6,7 Such
polymers should be absent in quadrupolar fluids and ph
separation should occur at all values ofl for fluids with a
sufficiently large molecular quadrupole moment.
2377/6/$10.00 © 1997 American Institute of Physics
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238 O’Shea, Dubey, and Rasaiah: Phase transitions of quadrupolar fluids
In this paper we discuss Gibbs ensemble simulation
quadrupolar fluids over the full range of values ofl and we
determine whether a liquid–vapor phase transition occ
when the dispersive force is absent~i.e., l50!. Our results
show that such phase a transition does indeed occur f
reduced quadrupole moment ofQ*52.0 and the critical
temperature scales quadratically with the parameterl of the
modulated Lennard-Jones reference system.

II. GIBBS ENSEMBLE SIMULATIONS OF
QUADRUPOLAR FLUIDS

We have carried out Gibbs ensemble simulations of q
drupolar fluids in which the reference system is the mo
lated Lennard-Jones potential given in Eq.~1.4! and

ui j
QQ~r !5~3Q2/4r 5!@125 cos2 u i25 cos2 u j215 cos2 u i

3cos2 u j12~cosg i j25 cosu i cosu j !# ~2.1!

is the quadrupolar interaction potential between moleculei
and j whose relative orientation is determined by the ang
(u i ,f i) and (u j ,f j ) where cosui5ei–r i j , cosuj5ej–r i j ,
g i j5f i2f j5ei–ej and ei and ej are unit vectors along the
quadrupolar axes ofi and j , respectively, andr i j is a unit
vector pointing fromi to j . The reduced quadrupole mome
Q*5Q/(es5)1/2 whereQ is the quadrupole moment ande
ands are Lennard-Jones parameters.

Our implementation of the Gibbs ensemble simulation
essentially the same as that described in earlier work foll
ing the method introduced by Panagiotopoulos a
co-workers.8 The calculations were performed with 500 pa
ticles divided between two simulation boxes with nearly 3
in the liquidlike phase and the rest~150! in the vapor phase
The starting point in a run of givenl ~ranging from 1.0 to 0!
was a face centered cube in each box or an equilibra
sample of the two boxes at an adjacent value ofl. Similar
studies of quadrupolar fluids of different strengths of t
quadrupole momentQ* have been carried successfully wi
the full Lennard-Jones reference potential (l51.0).9,10As in
those studies, a simulation cycle consisted of attemp
single particle translational and orientational displaceme
followed by an attempted volume change of the box
(DV152DV25DV) and attempted particle transfers b
tween the boxes carried out sequentially. The translatio
and orientational displacements followed the usual Metro
lis scheme, while the volume changes were accepted if

@~V11DV!/V1#
N1@~V22DV!/V2#

N2@2b~DE11DE2!#.R,
~2.2!

whereV1 andV2 are the box volumes,DV is the volume
change andDE1 and DE2 are the corresponding energ
changes andR is a random number between 0 and 1.

The particle transfers between boxes were carried ou
the creation of a particle in a randomly chosen position
one box and the annihilation of a randomly chosen particle
the other box. The move was accepted if

@~V1 /~N111!!#@N2 /V2#@2b~DE11DE2!#.R. ~2.3!
J. Chem. Phys., Vol. 10
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The number of such moves was adjusted to achieve a suc
rate of about 1%–3%. The runs at each value ofl were
carried out over at least 30 000 cycles after equilibration
5000 cycles. The potentials were truncated at half the
length and the usual corrections applied for this cutoff in
calculation of the energy and the pressure. The chemical
tential of the particles in each phase~i.e., box! was deter-
mined by Widom particle insertion method.11 Thus the pres-
sures (Pl ,Pv) and the chemical potentials~m l andmv! are
determined independently in each box while the tempe
tures ~Tl and Tv! of the two boxes are held constant an
equal to each other. The conditions for equilibrium betwe
the phases are

Tl5Tv , ~2.4!

Pl5Pv , ~2.5!

m l5mv . ~2.6!

The last two relations are tested in the simulations. The
tistical uncertainties in the average values for the liqu
phases are much larger than those for the vapor phase
otherwise the averages are consistent throughout the st
falling within the combined estimated uncertainties. Beca
of the larger uncertainties in the liquid values, the valu
used in estimating the critical vapor pressure were those
the vapor phase.

Our Gibbs ensemble simulations were carried out
quadrupolar molecules with a reduced quadrupole mom
Q* of 2.0 over the complete range of values~1.0 to 0! of the
parameterl which modulates the dispersion interaction b
tween the molecules in Eq.~1.4!. We find a liquid–gas phase
transition for all values ofl including zero for this system
with Q*52.0 unlike the simulations carried out by va
Leeuwen and Smit, for dipolar fluids4 with a reduced dipole
momentm*52.0, which showed no liquid–gas phase tra
sition for l,0.35. Each value ofl in our study leads to a
distinct coexistence curve with the coexisting densities
liquid and gas~r l*5r ls

3 and rv*5rvs
3 in reduced units!

determined by the reduced temperatureT*5kT/e.
We have analyzed the coexistence curves at eachl as-

suming the law of rectilinear diameters and

~r l*1rv* !/25A~Tc*2T* !1B, ~2.7!

and a scaled coexistence curve of the form

~r l*2rv* !5Cu12T* /Tc* ub, ~2.8!

whereb50.32,rc* andTc* are the reduced density and tem
perature, respectively, at the critical point andA, B, andC
are constants. The critical pressures were determined by
ting ln P* linearly in 1/T* . Our results are summarized i
Table I and are plotted in Figs. 1–5.

Gibbs ensemble calculations for Lennard-Jones flu
show negligible size effects, whereas those for square w
fluids show marked finite size effects.12 In the present case
we have tested the size dependence by comparing calc
tions for N5500, 1000, and 1200. Except near the critic
point, where the larger systems are more stable due to
N21/2 effect, no systematic differences are evident in t
7, No. 1, 1 July 1997
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239O’Shea, Dubey, and Rasaiah: Phase transitions of quadrupolar fluids
TABLE I. Data for coexisting phases as a function of the damping factorl of the damped Lennard-Jones fluid with embedded linear quadrupolesQ*
52). Asterisks mean this data set has not been used in determiningrc .

T r l rv Pl Pv El Ev m l mv

l50 1.2 0.657 0.0053 0.0103 0.0059 212.6374 20.8923 24.8758 26.673
1.25 0.623 0.0075 0.0122 0.0088 212.1527 21.0116 27.2874 26.508
1.3 0.6152 0.0167 0.0148 0.0159 211.7673 22.0188 25.0608 26.1971
1.35 0.5533 0.0217 0.0179 0.0207 211.0302 22.035 24.5946 26.1538
1.4 0.5244 0.0438 0.0297 0.0337 210.5065 23.2422 24.1651 25.7271
1.35 0.5484 0.0204 0.0209 0.0194 211.0581 22.0221 25.2339 26.0074
1.3 0.6071 0.0149 0.0144 0.014 211.6971 21.858 28.3835 26.0767
1.4 0.532 0.0391 0.0302 0.0329 210.5888 22.9961 25.2313 25.8558
1.425 0.4837 0.0642 0.0428 0.0412 210.0459 24.2192 24.9804 25.482*
1.45 0.4586 0.081 0.0477 0.0489 29.6892 24.6042 25.2212 25.3479*
1.475 0.3748 0.1224 0.0572 0.0593 28.8164 25.4912 24.8794 25.3843*
1.5 0.3003 0.1849 0.0707 0.0706 27.9369 26.5913 25.6126 25.1602*

l50.1 1.3 0.7357 0.0054 0.0152 0.0065 214.0628 20.8934 27.4114 27.0948
1.4 0.6744 0.0123 0.0241 0.015 213.083 21.4619 24.9046 26.7006
1.45 0.6453 0.0198 0.0292 0.021 212.5719 21.9774 25.6023 26.4558
1.5 0.6098 0.0283 0.0316 0.0292 211.9774 22.3294 25.4291 26.36
1.55 0.5776 0.0428 0.0438 0.0408 211.4389 22.897 25.9503 26.0339
1.6 0.4951 0.0624 0.0578 0.0541 210.4225 23.6224 25.3355 25.948
1.6 0.5052 0.065 0.0562 0.0551 210.5319 23.7092 25.2774 26.7383
1.65 0.4153 0.1519 0.0818 0.0803 29.4068 25.982 25.4987 25.6052

l50.2 1.55 0.7202 0.0145 0.0282 0.0179 214.1378 21.431 27.2536 27.2132
1.6 0.697 0.0214 0.0291 0.0256 213.679 21.92 27.0125 27.0683
1.65 0.6648 0.0312 0.0436 0.0359 213.1089 22.4702 25.9355 27.0442
1.7 0.6198 0.0421 0.049 0.0462 212.4163 22.7685 26.1703 26.5726
1.75 0.5795 0.0604 0.0641 0.0622 211.7725 23.4688 26.1104 26.3758
1.775 0.5527 0.0797 0.0727 0.0705 211.3885 24.2786 26.1224 26.3413
1.8 0.5223 0.108 0.0837 0.0847 210.9226 24.9814 25.8423 26.2526
1.825 0.4904 0.1302 0.0935 0.0932 210.4605 25.5014 26.0085 26.1787
1.85 0.4491 0.2004 0.1097 0.1063 29.8889 26.7846 25.9093 26.016*

l50.4 1.9 0.7862 0.0189 0.0318 0.0284 216.2846 21.5484 26.8202 27.9657
2 0.7383 0.0335 0.0558 0.0503 215.3103 22.3014 26.8513 27.9245
2 0.7334 0.0325 0.0465 0.0487 215.2315 22.138 26.5127 27.9005
2.1 0.6716 0.0565 0.0828 0.0777 214.0163 23.0441 27.157 27.5526
2.15 0.6358 0.0809 0.1103 0.1022 213.4037 23.8808 26.8561 27.2691
2.2 0.5909 0.1097 0.1266 0.1233 212.5842 24.703 27.2146 27.1076
2.225 0.5604 0.1273 0.1403 0.1367 212.1169 25.1183 27.1361 26.9827
2.25 0.4536 0.1871 0.1479 0.151 210.7151 26.6166 26.8687 27.0792*
2.25 0.5216 0.1994 0.1592 0.1483 211.5344 26.8342 26.6781 26.8589*

l50.6 2.4 0.8063 0.0352 0.0648 0.0657 217.7944 22.1093 28.8223 29.1636
2.5 0.75 0.055 0.0995 0.0966 216.55 22.93 27.56 28.77
2.55 0.7215 0.0654 0.1228 0.1133 215.942 23.194 28.6183 28.7212
2.6 0.6855 0.0866 0.1334 0.14 215.214 23.863 29.0592 28.4257
2.65 0.6564 0.1118 0.1792 0.1675 214.2252 24.36 29.3223 28.348
2.7 0.6145 0.1329 0.2078 0.1946 213.8074 24.9279 27.8632 28.0493
2.75 0.519 0.1808 0.227 0.2299 212.243 25.9657 28.0146 27.8933

l50.8 2.9 0.8403 0.0427 0.0938 0.0963 219.9197 22.3306 29.9336 210.5181
2.95 0.8238 0.0552 0.1163 0.1188 219.4404 22.8422 210.0918 210.1994
3 0.802 0.0639 0.1447 0.137 218.9021 23.0718 210.7762 210.0379
3.05 0.7727 0.0739 0.1507 0.1545 218.2159 23.4259 211.1136 29.9215
3.1 0.7428 0.0843 0.1791 0.1756 217.5518 23.7433 29.4762 29.8261
3.15 0.7162 0.1066 0.2142 0.207 216.8925 24.4262 29.3484 29.5981
3.2 0.696 0.1463 0.2484 0.248 216.3953 25.7755 28.9094 29.2875
3.25 0.6289 0.1452 0.2661 0.2658 215.103 25.3403 29.2495 29.4063
3.2 0.6888 0.1381 0.2516 0.2408 216.2497 25.4441 29.3215 29.398
3.25 0.6508 0.2096 0.288 0.2876 215.4878 27.4878 29.6555 29.254

l51.0 3.3 0.9427 0.0339 0.1025 0.0932 224.1964 21.9815 211.5415 212.3851
3.4 0.9083 0.0463 0.1203 0.1232 223.1952 22.4941 211.6241 211.9623
3.5 0.8661 0.0592 0.1571 0.1552 221.9932 23.0092 211.1249 211.7416
3.6 0.8358 0.0852 0.2031 0.2078 221.0482 23.9718 210.7642 211.24
3.7 0.7895 0.1107 0.2807 0.2599 219.831 24.6374 211.3005 210.9847
3.8 0.7313 0.1467 0.3255 0.3208 218.4064 25.708 210.6174 210.7286
3.9 0.6427 0.218 0.4001 0.3999 216.428 27.6987 210.4674 210.4598
J. Chem. Phys., Vol. 107, No. 1, 1 July 1997
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240 O’Shea, Dubey, and Rasaiah: Phase transitions of quadrupolar fluids
results, and so all data for all system sizes are used in d
mining the critical constants reported in Table II. The da
for Tc* andPc* are very stable and well behaved, havingr 2

.0.99 in almost every case. The data forrc* on the other
hand, are less well behaved and show scatter especially
Tc* . These results are somewhat surprising, because it m
the difference in the densities is better behaved than the s
the variation shown is small but significant relative to t
systematic variation inrc* as a function ofl, as may be seen
in Fig. 3. A careful examination of block averages, obtain
by partitioning the production runs into 500 cycle block
shows that the relaxation ‘‘time’’ for the densities is lon

FIG. 1. Coexistence curves of the liquid and vapor densities in reduced
as a function of the reduced temperatureT* of a quadrupolar fluid (Q*
52.0) for different values ofl which modulates the dispersive term of th
Lennard-Jones reference system—see Eq.~1.4!.

FIG. 2. Plot of the critical temperatureTc* vs l for a modulated Lennard-
Jones quadrupolar fluid withQ*52.0. The equation gives the best leas
squares quadratic fit to the data.
J. Chem. Phys., Vol. 10
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necessitating long runs. Most of the results reported here
for averages over 50 000 cycles, although a few are
shorter runs; in those cases the results are for stable par
runs where the boxes switched identities as they someti
do nearTc* .

III. DISCUSSION

As expected, the vapor–liquid equilibrium of the qu
drupolar LJ fluid is more like that of the pure LJ fluid tha
that of the dipolar damped LJ fluid3,4,6,7where the liquid–gas
phase transition is believed to be inhibited by chain form
tion below a limiting value ofl. The problem however is

its
FIG. 3. Plot of the critical densityrc* vs l for a modulated Lennard-Jone
quadrupolar fluid withQ*52.0. The equation gives the best least-squa
linear fit to the data.

FIG. 4. Plot of the critical pressurePc* vs l for a modulated Lennard-Jone
quadrupolar fluid withQ*52.0. The equation gives the best least-squa
quadratic fit to the data.
7, No. 1, 1 July 1997
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241O’Shea, Dubey, and Rasaiah: Phase transitions of quadrupolar fluids
more subtle than generally realized since the modulated
erence potential can be rewritten as

u~r !54e8@~s8/r !122~s8/r !6#, ~3.1!

wheree85el2 ands85s/l1/6 showing that it is still a two
parameter Lennard-Jones potential so long aslÞ0. This
suggests that the phase transition~or lack thereof! in dipolar
fluids is related to the strength of the dipole moment relat
to the depth of the Lennard-Jones potential well. A stro
enough dipole moment will prevent the Lennard-Jon
liquid–gas phase transition by promoting chain formatio
The critical value of this ratio remains to be determined e
pirically ~computer simulation!! or by theoretical analysis
The competition between chain association and liquid c
densation has been studied in the context of a van der W
mean-field theory by van Roij13 and the effect of molecula
elongation of dipolar hard-core spherocylinders on this co
petition has been investigated by McGrother and Jacks14

using computer simulation.
In the absence of dipole or multipolar interactions, t

intermolecular potential has the Lennard-Jones form

FIG. 5. Plot of the critical compressibilityZc* vsl for a modulated Lennard-
Jones quadrupolar fluid withQ*52.0. The equation gives the best leas
squares linear fit to the data.

TABLE II. Critical constants as a function of the damping factorl in the
damped Lennard-Jones model with embedded linear quadrupolesQ*
52).

l Tc* rc* Pc* Zc*

1.0 3.965 0.424 0.455 0.2706
0.8 3.331 0.376 0.338 0.2699
0.6 2.781 0.353 0.252 0.2567
0.4 2.28 0.335 0.170 0.2226
0.2 1.861 0.299 0.118 0.2121
0.1 1.676 0.269 0.0964 0.2138
0.0 1.505 0.248 0.0768 0.2058
J. Chem. Phys., Vol. 10
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~3.1! whenlÞ0, and systems with different values for th
parameterse8 and s8 in Eq. ~3.1! obey the law of corre-
sponding states. The configurational free energiesF~V,T;l!
of two such systems are related by15

F~V,T;l!5l2F~V8,T8;l51!1~NkT/2!ln l, ~3.2!

whereV85Vl1/2 andT85T/l2. Differentiation with respect
to the volume relates the single phase pressures by

P~V,T;l!5l5/2P~V8,T8;l51!. ~3.3!

The equations of state are also related using approp
scaled variables,14 but the reduced critical densityrcs83,
critical temperaturekTc /e8 and critical pressurePcs83/e8
are unchanged.

In our study we define the reduced density, temperat
and pressure for alll by r*5rs3, T*5kT/e and P*
5Ps3/e, respectively, wheres ande are the parameters o
the unmodulated Lennard-Jones potential i.e., forl51. It
follows that the reduced critical temperatureTc* scales as
l2 and the reduced critical densityrc* scales asl1/2. The
compressibility factorPc* /rc* kTc* at the critical point is what
it is for a Lennard-Jones fluid, so that the reduced press
Pc* at the critical point must scale asl5/2. These results are
exact and are confirmed in recent Gibbs ensem
simulations.16

The presence of additional dipolar or multipolar intera
tions however would change this to an extent determined
the strength of the dipole or quadrupole interactions. Th
the law of corresponding states is not expected to hold
cept in special situations. For instance, the Stockmayer
tential ~Lennard-Jones plus point dipoles! is conformal1,15

with the Lennard-Jones potential toO(m4), and the
temperature-dependent effective Stockmayer poten
uES(r ) to this order is given by an equation of the same fo
as Eq.~3.1!, i.e.,

uES~r !54e8@~s8/r !122~s8/r !6#, ~3.4!

with e85e(112x)2 and s85s/(112x)1/6 where x(T)
5m* 4/24T* in which the reduced dipole momentm* is re-
lated to the dipole momentm bym*5(m2/es3)1/2. A similar
relationship clearly exists for systems interacting throu
point dipoles with the modulated Lennard-Jones potent
since the latter is conformal with the full Lennard-Jones p
tential. In this case, the definitions ofe8 ands8 in the effec-
tive Stockmayer potential are altered toe85e(l12x)2 and
s85s/(l12x)1/6 so that the prediction now is that the re
duced critical temperatureTc* scales as (l12x)2 and the
corresponding reduced critical densityrc* scales as (l
12x)1/2 toO(m4) in the dipole moment. In the same regio
the compressibility factorPc* /rc* kTc* at the critical point is
unchanged from that of a Lennard-Jones fluid, so that
reduced pressurePc* at the critical point must scale a
(l12x)5/2. These predictions are expected to hold on
when the dipole momentm is small. The breakdown a
higher dipole moments is discussed in the Introduction.
7, No. 1, 1 July 1997
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242 O’Shea, Dubey, and Rasaiah: Phase transitions of quadrupolar fluids
There is no such simplification in the thermodynam
properties of molecules with point quadrupoles added t
Lennard-Jones pair interaction and we must resort to m
accurate theory or simulations to understand these sys
near the critical region. Indeed, to within the accuracy of o
simulations of the quadrupolar fluid whenQ*52.0, our re-
sults show that the reduced critical temperatureTc* and pres-
surePc* ~Figs. 2 and 4! scale quadratically withl; the qua-
dratic dependence is weak, but the quality of the fit sho
that it is reliable. On the other hand, the reduced criti
density rc* is less reliable~Fig. 3!, and appears to be ad
equately described by a linear dependence inl. The com-
pressibility factorZc*5Pc* /rc*Tc* , which shows more scat
ter ~Fig. 5! due to the presence of the denominator, is a
adequately described by a linear dependence onl.

IV. SUMMARY

Careful systematic study of quadrupolar damp
Lennard-Jones fluid shows that the normal vapor–liq
equilibrium is observed for all values of the damping fac
l, in contrast to the equivalent dipolar case where liqui
vapor equilibrium is suppressed forl,0.35. The scaling of
the critical parameters with the damping factorl is dis-
cussed.
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