Phase transitions of quadrupolar fluids
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Gibbs ensemble simulations are reported for Lennard-Jones particles with embedded quadrupoles of
strengthQ* =Q/(ec®)¥?=2.0 wheree and o are the Lennard-Jones parameters. Calculations
revealing the effect of the dispersive forces on the liquid—vapor coexistence were carried out by
scaling the attractive® term in the Lennard-Jones pair potential by a fadgtesanging from 0 to

1. Liquid—vapor coexistence is observed for all values afcluding\ =0 for Q* = 2.0, unlike the
corresponding dipolar fluid studied by van Leeuwen and Snil. [Phys. Rev. Lett71, 3991
(1993] which showed no phase transition belaws 0.35 when the reduced dipole momeunt

=2.0. The simulation data are analyzed to estimate the critical properties of the quadrupolar fluid
and their dependence on the strengthf the dispersive force. The critical temperature and pressure
show a clear quadratic dependencelgrwhile the density is less confidently identified as being
linear in A. The compressibility is roughly linear in. © 1997 American Institute of Physics.
[S0021-960607)50625-9

I. INTRODUCTION wherer =|r;;| is the distance betwednandj and the per-
. , ) ) turbation is due to dipole and multipole interactions. It was
Phase transitions and separations in polar fluids and pGno,ght until recently that the presence of the dispersive
lar flqld mixtures are of spemal |mportance to industrial | ;ndon term represented by (r)® is not essentidlsince the
phemlsts and chemical engineers. It is also of great theorefﬁtegrandin f, is proportional to 1#®. This arises from two
ical interest to be able to characterize the nature of thesginsle honds in parallel with the reference correlation func-
coexisting phases and to _pmpomt the molecular propertiegg, g°(r) in the graphical expansion of the free energy.
that lead to phase separation. It came as a surprise when Gibbs ensemble and other

Thermodynamic perturbation theory has been the maigjnjations showed the dispersive term is required and that
theoretical tool in these studies in which the excess free ery liquid—vapor phase transition occurs, for example, in a

ergyF*is expanded about a reference system of free energy, q_sphere dipolar fluidi? This also implies that the appli-

Fexo cation of the Padapproximant to hard spheres plus dipoles
FeX= %04 rf 4+ 2,4+ B gt (1.1 to map the coexisting phase boundaries is fundamentally
flawed since it predicts phase separation. In particular, the
wheref,, f,, andf; are integrals or the sums of integrals of widely quoted application of the SRN theory to dipolar hard
the perturbing potentials of strengthover two- and three- spheres by Rushbroole al® to predict the two phase region
body correlation functions of the reference system and th@ at odds with these Gibbs ensemble simulations.
term of O({) vanishes if the reference system is spherically By modulating the dispersion force with a factorbe-
symmetric. For example, the parameter u? for a polar  tween 0 and Lin the pair potential
fluid, where u is the dipole moment. However, the free en-
ergy expansion for dipolar and multipolar fluids oscillates _ 12 6
widely but is tamed by the Padmproximant uij(r)=4el(alr)“=N(alr)"], (1.4)
Fe(Pade=F+ (%f,/(1- {f5/f)) (1.2 it was found that no phase transition occurs below0.35
when the reduced dipole moment is 2.0. These results came
ggm Gibbs ensemble simulations of a dipolar fldiMicro-
of simple polar fluids and their mixtures although it providesSCOPIC Pictures of the system pinpoint the absence of a tran-
only mean-field critical exponents. sition as dug to the formatlgn of polymers of dipolar chains
e|When the dispersion force is weak or absent. Several other

In comparing theory with experiments on real or mod ; | | h 1uéid h
fluids, the reference system is often represented by th&tudies also seem to lend support these conclusiogaic

spherically symmetric Lennard-Jones potential polymers should be absent in quadrupolar qujds a'nd phase
separation should occur at all values)ofor fluids with a

u;j(r)=4€[(alr)?=(alr)®], (1.3 sufficiently large molecular quadrupole moment.

of Stell, Rasaiah, and Narar(@RN).! This approximation
has been found to be useful in mapping the phase boundari
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238 O’Shea, Dubey, and Rasaiah: Phase transitions of quadrupolar fluids

In this paper we discuss Gibbs ensemble simulations ofhe number of such moves was adjusted to achieve a success
quadrupolar fluids over the full range of valuesdoénd we rate of about 1%—-3%. The runs at each value\aivere
determine whether a liquid—vapor phase transition occursarried out over at least 30 000 cycles after equilibration for
when the dispersive force is abséne., A\=0). Our results 5000 cycles. The potentials were truncated at half the box
show that such phase a transition does indeed occur for langth and the usual corrections applied for this cutoff in the
reduced quadrupole moment §*=2.0 and the critical calculation of the energy and the pressure. The chemical po-
temperature scales quadratically with the parametef the tential of the particles in each phagee., boX was deter-
modulated Lennard-Jones reference system. mined by Widom particle insertion methdtThus the pres-
sures @,,P,) and the chemical potentialg:, and w,) are
determined independently in each box while the tempera-
tures (T, and T,) of the two boxes are held constant and
equal to each other. The conditions for equilibrium between
the phases are

Il. GIBBS ENSEMBLE SIMULATIONS OF
QUADRUPOLAR FLUIDS

We have carried out Gibbs ensemble simulations of qua- T =T (2.4)
drupolar fluids in which the reference system is the modu- e '
lated Lennard-Jones potential given in Ef.4) and P=P,, (2.9
uF(r)=(3Q%4r%)[1-5 cog #,—5cos #;,—15 co ¢, = ey - 2.6
X co< 0;+2(cos y;; —5 cos; cosf;)] (2.1  The last two relations are tested in the simulations. The sta-

) ) ] ) ] tistical uncertainties in the average values for the liquid
is the quadrupolar interaction potential between molecules phases are much larger than those for the vapor phase, but
andj whose relative orientation is determined by the angleg,ieryise the averages are consistent throughout the study,
(eiv_‘ﬁi) and_ (0;.¢;) where cogh=g-ri;, cosf=g-rjj, falling within the combined estimated uncertainties. Because
vij=#i—#;=6-§ ande andg are unit vectors along the ¢ the |arger uncertainties in the liquid values, the values
quadrupolar axes df and j, respectively, and;; is a unit ;504 in estimating the critical vapor pressure were those for
vector pointing from to j. The reduced quadrupole moment i, vapor phase

_ 5\1/2 - :
Q*=Q/(e0”)™* whereQ is the quadrupole moment ard Our Gibbs ensemble simulations were carried out for

ando are Lennard-Jones parameters. quadrupolar molecules with a reduced quadrupole moment

Our implementation of the Gibbs ensemble simulation isQ* of 2.0 over the complete range of valudsO to 0 of the
essentially the same as that described in earlier work followz o .o - tan which modulates the dispersion interaction be-

ing the srgwethod introduced by ~Panagiotopoulos  anGyeen the molecules in E¢L.4). We find a liquid—gas phase
co-workers: The calculations were performed with 500 par- 4o nsition for all values of including zero for this system

ticles divided between two simulation boxes with nearly 350t Q*=2.0 unlike the simulations carried out by van

in the liquidlike phase and the re&tS0) in the vapor phase. | aeywen and Smit, for dipolar fluiisvith a reduced dipole
The starting point in a run of glven (ranging from 1.0 tp_)) momentu* = 2.0, which showed no liquid—gas phase tran-
was a face centered cube in each box or an equilibratediion for A <0.35. Each value ok in our study leads to a

sample of the two boxes at an adjacent value.oSimilar  gistinct coexistence curve with the coexisting densities of
studies of quadrupolar fluids of different strengths of theliquid and gas(p|*=p|cr3 and p* =p, o in reduced units
v v

guadrupole momer®* have been carried successfully with determined by the reduced temperatlife=k T/ e.

the full Lennard-Jones reference potentiai1.0) > As in We have analyzed the coexistence curves at aaab-
those studies, a simulation cycle consisted of attemptegummg the law of rectilinear diameters and

single particle translational and orientational displacements,

followed by an attempted volume change of the boxes (pf +py)/2=A(Tg—T*)+B, 2.7
(AV;=—-AV,=AV) and attempted particle transfers be- n4 5 scaled coexistence curve of the form

tween the boxes carried out sequentially. The translational

and orientational displacements followed the usual Metropo-  (pf —p})=C|1-T*/T§|?, 2.8

lis scheme, while the volume changes were accepted if where8=0.32, p* andT* are the reduced density and tem-

[(V{+ AWV N[ (V,— AV)IV,]N[— B(AE;+ AE,) >R, perature, respectively, at the critical point aAdB, andC
(2.2 are constants. The critical pressures were determined by fit-
ting In P* linearly in 1/T*. Our results are summarized in

whereV,; andV, are the box volumesAV is the volume Table | and are plotted in Figs. 1-5.

change andAEl and AE, are the corresponding energy Gibbs ensemble calculations for Lennard-Jones fluids
changes an® is a random number between 0 and 1.

The particle transfers between boxes were carried out bShOW negligible size effects, whereas those for square well

: o L Yluids show marked finite size effectsln the present case
the creation of a particle in a randomly chosen position in

one box and the annihilation of a randomly chosen particle iri/iven ha;vs I\tle_stseodo thleog(ljze ggpfgggngi by tc;)mp;a{rl]ng cr:;’;\tilculla-
the other box. The move was accepted if ons for = ' » @ - =Xxcept near the critica

point, where the larger systems are more stable due to the
[(Vi/(N7+1)]IN,/Vo][— B(AE;+AE,)]>R. (2.3 N2 effect, no systematic differences are evident in the
J. Chem. Phys., Vol. 107, No. 1, 1 July 1997
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TABLE |. Data for coexisting phases as a function of the damping faxtof the damped Lennard-Jones fluid with embedded linear quadrupQles (
=2). Asterisks mean this data set has not been used in determiging

T pi Pv Pl PU El Ev M My
A=0 1.2 0.657 0.0053 0.0103 0.0059 —12.6374 —0.8923 —4.8758 —6.673
1.25 0.623 0.0075 0.0122 0.0088 —12.1527 —1.0116 —7.2874 —6.508
13 0.6152 0.0167 0.0148 0.0159 —11.7673 —2.0188 —5.0608 —6.1971
1.35 0.5533 0.0217 0.0179 0.0207 —11.0302 —2.035 —4.5946 —6.1538
14 0.5244 0.0438 0.0297 0.0337 —10.5065 —3.2422 —4.1651 —5.7271
1.35 0.5484 0.0204 0.0209 0.0194  —11.0581 —2.0221 —5.2339 —6.0074
13 0.6071 0.0149 0.0144 0.014 —11.6971 —1.858 —8.3835 —6.0767
14 0.532 0.0391 0.0302 0.0329 —10.5888 —2.9961 —5.2313 —5.8558
1.425 0.4837 0.0642 0.0428 0.0412 —10.0459 —4.2192 —4.9804 —5.48%
1.45 0.4586 0.081 0.0477 0.0489 —9.6892 —4.6042 —5.2212 —5.3479
1.475 0.3748 0.1224 0.0572 0.0593 —8.8164 —5.4912 —4.8794 —5.3843
15 0.3003 0.1849 0.0707 0.0706 —7.9369 —6.5913 —5.6126 —5.1602
A=0.1 1.3 0.7357 0.0054 0.0152 0.0065 —14.0628 —0.8934 —7.4114 —7.0948
1.4 0.6744 0.0123 0.0241 0.015 —13.083 —1.4619 —4.9046 —6.7006
1.45 0.6453 0.0198 0.0292 0.021 —12.5719 —1.9774 —5.6023 —6.4558
15 0.6098 0.0283 0.0316 0.0292 —11.9774 —2.3294 —5.4291 —6.36
155 0.5776 0.0428 0.0438 0.0408 —11.4389 —2.897 —5.9503 —6.0339
1.6 0.4951 0.0624 0.0578 0.0541 —10.4225 —3.6224 —5.3355 —5.948
1.6 0.5052 0.065 0.0562 0.0551 —10.5319 —3.7092 —5.2774 —6.7383
1.65 0.4153 0.1519 0.0818 0.0803 —9.4068 —5.982 —5.4987 —5.6052
A=0.2 1.55 0.7202 0.0145 0.0282 0.0179 —14.1378 —1.431 —7.2536 —7.2132
1.6 0.697 0.0214 0.0291 0.0256 —13.679 —-1.92 —7.0125 —7.0683
1.65 0.6648 0.0312 0.0436 0.0359 —13.1089 —2.4702 —5.9355 —7.0442
1.7 0.6198 0.0421 0.049 0.0462 —12.4163 —2.7685 —6.1703 —6.5726
1.75 0.5795 0.0604 0.0641 0.0622 —11.7725 —3.4688 —6.1104 —6.3758
1.775 0.5527 0.0797 0.0727 0.0705 —11.3885 —4.2786 —6.1224 —6.3413
1.8 0.5223 0.108 0.0837 0.0847 —10.9226 —4.9814 —5.8423 —6.2526
1.825 0.4904 0.1302 0.0935 0.0932  —10.4605 —5.5014 —6.0085 —6.1787
1.85 0.4491 0.2004 0.1097 0.1063 —9.8889 —6.7846 —5.9093 —6.016
A=04 1.9 0.7862 0.0189 0.0318 0.0284  —16.2846 —1.5484 —6.8202 —7.9657
2 0.7383 0.0335 0.0558 0.0503 —15.3103 —2.3014 —6.8513 —7.9245
2 0.7334 0.0325 0.0465 0.0487 —15.2315 —2.138 —6.5127 —7.9005
21 0.6716 0.0565 0.0828 0.0777 —14.0163 —3.0441 —7.157 —7.5526
2.15 0.6358 0.0809 0.1103 0.1022 —13.4037 —3.8808 —6.8561 —7.2691
2.2 0.5909 0.1097 0.1266 0.1233 —12.5842 —4.703 —7.2146 —7.1076
2.225 0.5604 0.1273 0.1403 0.1367 —12.1169 —5.1183 —7.1361 —6.9827
2.25 0.4536 0.1871 0.1479 0.151 —10.7151 —6.6166 —6.8687 —7.0792
2.25 0.5216 0.1994 0.1592 0.1483  —11.5344 —6.8342 —6.6781 —6.8589
A=0.6 2.4 0.8063 0.0352 0.0648 0.0657 —17.7944 —2.1093 —8.8223 —9.1636
2.5 0.75 0.055 0.0995 0.0966 —16.55 —2.93 —7.56 —8.77
2.55 0.7215 0.0654 0.1228 0.1133 —15.942 —3.194 —8.6183 —8.7212
2.6 0.6855 0.0866 0.1334 0.14 —15.214 —3.863 —9.0592 —8.4257
2.65 0.6564 0.1118 0.1792 0.1675 —14.2252 —4.36 —9.3223 —8.348
2.7 0.6145 0.1329 0.2078 0.1946 —13.8074 —4.9279 —7.8632 —8.0493
2.75 0.519 0.1808 0.227 0.2299 —12.243 —5.9657 —8.0146 —7.8933
A=0.8 2.9 0.8403 0.0427 0.0938 0.0963  —19.9197 —2.3306 —9.9336 —10.5181
2.95 0.8238 0.0552 0.1163 0.1188 —19.4404 —2.8422 —10.0918 —10.1994
3 0.802 0.0639 0.1447 0.137 —18.9021 —3.0718 —10.7762 —10.0379
3.05 0.7727 0.0739 0.1507 0.1545 —18.2159 —3.4259 —11.1136 —9.9215
3.1 0.7428 0.0843 0.1791 0.1756 —17.5518 —3.7433 —9.4762 —9.8261
3.15 0.7162 0.1066 0.2142 0.207 —16.8925 —4.4262 —9.3484 —9.5981
3.2 0.696 0.1463 0.2484 0.248 —16.3953 —5.7755 —8.9094 —9.2875
3.25 0.6289 0.1452 0.2661 0.2658 —15.103 —5.3403 —9.2495 —9.4063
3.2 0.6888 0.1381 0.2516 0.2408 —16.2497 —5.4441 —9.3215 —9.398
3.25 0.6508 0.2096 0.288 0.2876 —15.4878 —7.4878 —9.6555 —9.254
A=1.0 3.3 0.9427 0.0339 0.1025 0.0932 —24.1964 —1.9815 —11.5415 —12.3851
3.4 0.9083 0.0463 0.1203 0.1232 —23.1952 —2.4941 —11.6241 —11.9623
3.5 0.8661 0.0592 0.1571 0.1552 —21.9932 —3.0092 —11.1249 —11.7416
3.6 0.8358 0.0852 0.2031 0.2078 —21.0482 —3.9718 —10.7642 —11.24
3.7 0.7895 0.1107 0.2807 0.2599 —19.831 —4.6374 —11.3005 —10.9847
3.8 0.7313 0.1467 0.3255 0.3208 —18.4064 —5.708 —10.6174 —10.7286
3.9 0.6427 0.218 0.4001 0.3999 —16.428 —7.6987 —10.4674 —10.4598
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) o o _FIG. 3. Plot of the critical densitys vs \ for a modulated Lennard-Jones
FIG. 1. Coexistence curves of the liquid and vapor densities in reduced unit§yadrupolar fluid withQ* =2.0. The equation gives the best least-squares
as a function of the reduced temperatdre of a quadrupolar fluid Q* linear fit to the data.
=2.0) for different values ok which modulates the dispersive term of the
Lennard-Jones reference system—see(Ed).
necessitating long runs. Most of the results reported here are
for averages over 50 000 cycles, although a few are for

results, and so all data for all system sizes are used in deter; .
shorter runs; in those cases the results are for stable parts of

mining the critical constants reported in Table Il. The data . . o .
. * : runs where the boxes switched identities as they sometimes

for T and P} are very stable and well behaved, havirfg do nearT*

>0.99 in almost every case. The data fgr on the other ¢

hand, are less well behaved and show scatter especially near

T* . These results are somewhat surprising, because it meal

thce difference in the densities is better behaved than the surﬂ:ﬁ DISCUSSION

the variation shown is small but significant relative to the  As expected, the vapor—liquid equilibrium of the qua-

systematic variation ips as a function of\, as may be seen drupolar LJ fluid is more like that of the pure LJ fluid than

in Fig. 3. A careful examination of block averages, obtainecthat of the dipolar damped LJ fluiid“where the liquid—gas

by partitioning the production runs into 500 cycle blocks, phase transition is believed to be inhibited by chain forma-

shows that the relaxation “time” for the densities is long, tion below a limiting value ofA. The problem however is

T. = 0855460 22+ 1.602469 X + 1.505825 P, =0230891 A2 +0.144480 X +0.078292
e =0 . .
r? = 0.999986 r? =0.999613
4.00 - 0.50
3.50 4 0.40 -
3.00 - 0.30 -|
g M
P
2.50 - 0.20
2.00 4 0.10
C
1.50 {7 T T r T v 0.00 T T T T i
000 025 050 - 075 1.00 1.25 000 0.25 050 075 1.00 1.25
A A

FIG. 2. Plot of the critical temperatuf®; vs \ for a modulated Lennard-

FIG. 4. Plot of the critical pressuif@t vs\ for a modulated Lennard-Jones

Jones quadrupolar fluid wit* =2.0. The equation gives the best least- quadrupolar fluid withQ* =2.0. The equation gives the best least-squares
squares quadratic fit to the data. guadratic fit to the data.
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Z,=0.074103 X+ 0.203103 (3.1) when\#0, and systems with different values for the
r2 = 0931442 parameters’ and o’ in Eq. (3.1) obey the law of corre-
sponding states. The configurational free ener§i€s, T;\)

of two such systems are related'by

F(V,T;N)=NF(V', T ;A=1)+(NKT/2Inx, (3.2

whereV’' =V\Y?andT’ =T/A2. Differentiation with respect
to the volume relates the single phase pressures by

P(V,T;N)=AP(V/, TN =1). 33

The equations of state are also related using appropriate
scaled variable¥ but the reduced critical density.o '3,
: critical temperaturekT./€’ and critical pressur@®.o'>/ e’
000 025 050 075 100 125 are unchanged.
A In our study we define the reduced density, temperature,
and pressure for alk by p*=po®, T*=kT/e and P*
=Po? e, respectively, wherer and e are the parameters of
FIG. 5. Plot of the critical compressibili vs\ for a modulated Lennard- the unmodulated Lennard-qqnes potential i.e., Nerl. It
Jones quadrupolar fluid witp* =2.0. The equation gives the best least- follows that the reduced critical temperatuf§ scales as
squares linear fit to the data. A2 and the reduced critical densip} scales as\*2 The
compressibility factoP} /p’ kT at the critical point is what
it is for a Lennard-Jones fluid, so that the reduced pressure
more subtle than generally realized since the modulated ref} at the critical point must scale as'2. These results are
erence potential can be rewritten as exact and are confirmed in recent Gibbs ensemble
U(I’)=46’[(0"/r)12—(U,/r)e], (31) SII'T]LI'aIIOI’]Sl.6 - - . .

The presence of additional dipolar or multipolar interac-
wheree’ =e\? and g’ = o/\"/° showing that it is still 2 two  tions however would change this to an extent determined by
parameter Lennard-Jones potential so longhas0. This  the strength of the dipole or quadrupole interactions. Then
suggests that the phase transition lack thereofin dipolar  the Jaw of corresponding states is not expected to hold ex-
fluids is related to the strength of the dipole moment relativezept in special situations. For instance, the Stockmayer po-
to the depth of the Lennard-Jones potential well. A strongential (Lennard-Jones plus point dipojes conformat®
enough dipole moment will prevent the Lennard-Jonesyith the Lennard-Jones potential t®(x*), and the
liquid—gas phase transition by promoting chain formationtemperature-dependent effective Stockmayer potential

The critical value of this ratio remains to be determined emy,ES(r) to this order is given by an equation of the same form
pirically (computer simulation! or by theoretical analysis. as Eq.(3.1), i.e.,

The competition between chain association and liquid con-

densation has been studied in the context of a van der Waals ES(r)=4¢'[(o'/r)12—(o'/1)8], (3.4)
mean-field theory by van Rdi} and the effect of molecular

elongation of dipolar hard-core spherocylinders on this comyjith ¢'=¢(1+2y)2 and o’ = a/(1+2x)>® where x(T)
petition has been investigated by McGrother and Jackson = u*4/24T* in which the reduced dipole momept* is re-

using computer simulation. lated to the dipole moment by u* = (u?/ea®)Y2. A similar

In the absence of dipole or multipolar interactions, theye|ationship clearly exists for systems interacting through
intermolecular potential has the Lennard-Jones form Edpoint dipoles with the modulated Lennard-Jones potential,
since the latter is conformal with the full Lennard-Jones po-
tential. In this case, the definitions ef ando’ in the effec-
tive Stockmayer potential are altereddb=e(\+2y)? and

0.20

TABLE II. Critical constants as a function of the damping fackomn the
damped Lennard-Jones model with embedded linear quadrup@és (

~2). o’ =ol(A+2x)Y® so that the prediction now is that the re-
duced critical temperatur&® scales as X+ 2x)? and the
A Tex Pex Pex Zox corresponding reduced critical densip} scales as X
1.0 3.965 0.424 0.455 0.2706 +2x)Y2to O(«*) in the dipole moment. In the same region,
0.8 3.331 0.376 0.338 0.2699 the compressibility factoPy/pg kT at the critical point is
0.6 2.781 0.353 0.252 0.2567 unchanged from that of a Lennard-Jones fluid, so that the
8-‘2‘ i-ggl g-ggg g-ﬂg g-gigi reduced pressur®; at the critical point must scale as
01 1676 0.269 0.0964 0.2138 (N +2x)%2 These predlctlons are expected to hold only
0.0 1.505 0.248 0.0768 0.2058 when the dipole momeng is small. The breakdown at

higher dipole moments is discussed in the Introduction.

J. Chem. Phys., Vol. 107, No. 1, 1 July 1997
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