Molecular dynamics study of a dipolar fluid between charged plates. Il
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Further molecular dynamics simulations of thin films of Stockmayer molecules between
Lennard-Jones plates are discussed when the distance /4 between the plates ranges from 2.25 o
t0 9.5 o, where o is the molecular diameter, and the electric field E ranges between 0 and 10'°
V/m. The solvation force is calculated as a function of the plate separation # when E = 0 and
E = 10° V/m and as a function of the field E when # = 4.0 ¢ and 7.5 0. We also study the
system when 4 = 2.25 o and 4.0 ¢ with the field E ranging from 0 to 10'° V/m and find that
the monolayer system (h = 2.25 o) seems to undergo changes of state as the temperature is
lowered at zero field or if the field is changed at low temperature. While, in the absence of a
field, the molecules tend to form loops and chain-like structures with the dipoles parallel to the
wall, a strong external field orients the dipoles along the field so that the long-range repulsive
interaction appears to induce a transition to an imperfect (two-dimensional) triangular lattice
at low temperature. In between these states, at low temperatures and high fields, the molecules

are packed in parallel chains with their moments perpendicular to the field and in

“ferroelectric domains” of opposite polarization.
P

I. INTRODUCTION

In a previous communication,’ we discussed a molecu-
lar dynamics study of a thin film of Stockmayer molecules
between Lennard-Jones plates separated by a distance
h =1.5 o, where o is the Lennard-Jones diameter. These
studies were carried out in the presence of an electric field E
between the plates and in its absence. Our attention was
mainly confined to the density and polarization density pro-
files, to the components of the total dipole moment parallel
and perpendicular to the walls, and to the decay of the dipole
autocorrelation functions. Continuing that study here, we
discuss new results at smaller (4 = 2.25 ¢, 3.2 g, and 4.0 ¢)
and larger (4 = 9.5 o) plate separations which include the
solvation force as a function of # when E = 0 and E = 10°
V/m and as a function of E when the plate separations are
4.0 0 and 7.5 o, respectively. We have also extended our
earlier investigations' of the polarization density profiles as a
function of the electric field to different plate separations and
confirm our previous observation' that the dipoles in the
first layers near the plates are mostly oriented parallel to the
surface in the absence of a field between the plates, and that
the polarization density (P, (z,E)), in the direction of the
field, is fairly well approximated by the product of local den-
sity {p(z)) and the component of the dipole moment
(i, (z)) parallel to the field. Our study of a monolayer film
between plates separated by 2.25 o reveals unusual features
that accompany the freezing of the rotational and transla-
tional motion of dipoles in this layer when the temperature is
lowered. This has lead us to a detailed examination of the
equilibrium and dynamic properties of this system in fields
up to E = 10'° V/m providing an interesting account of the
changes brought about by a reduction in dimensionality.
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A theoretical and computer simulation study of the
force between two parallel plates immersed in a fluid of hard
spheres has been carried out recently by Wertheim, Blum,
and Bratkos.?® For very small gaps, barely exceeding one
sphere diameter o, they derived the exact limiting law that
the density approaches the fugacity as the gap width ap-
proaches 0. They also compared their theoretical predic-
tions of the density profiles with the simulations. Monte
Carlo simulations of this system have also been performed
by Snook and Henderson.>®® A molecular dynamics simula-
tion of atomic self-diffusion in a thin film of Lennard-Jones
molecules has been carried out recently® where it is found
that the time needed for diffusive behavior to show up in-
creases substantially for thinner systems, thereby signifying
the lack of diffusion in a two-dimensional system. Earlier
simulations that are most closely related to our work are the
Monte-Carlo and molecular dynamics calculations of Snook
and van Megan* and Magda et al.,’ respectively, who studied
Lennard-Jones molecules between Lennard-Jones walls.
However, our study is, as far as we know, the first detailed
investigation of the solvation force and dynamics of a simple
polar fluid between plates in the presence of a strong electric
field. Theories of the solvation force between plates have
been reviewed by Rickayzen.®

In Sec. IT we present some details of the molecular dy-
namics simulation in addition to those discussed briefly in
Sec. II of our previous paper’; our results and conclusions
are discussed in Sec. III.

Il. DETAILS OF THE MOLECULAR DYNAMICS
SIMULATION

The pair potential for a Stockmayer fluid” is given by
u; (LB, =4€[(0/r)'? — (a/r)°] — T, ,  (2.1)

wherer =r; —r;, r = [r|, p, is the dipole moment vector of
particle i, € and o are the Lennard-Jones parameters, and T is
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the dipole interaction tensor
T = (3rr/rP —U) /P (2.2)

where U is the unit matrix. The dipole—-dipole potential ener-
gy, force, and torque for particle / in the absence of an exter-
nal field without Ewald summation are given in Ref. 1. The
corresponding equations with Ewald summation are, how-
ever, much more complicated. Each equation splits into the
sum of two parts, one in real space and the other in reciprocal
space.® The effective dipole—dipole potential for a periodic
system, surrounded by a vacuum, can be written as

Upp = — (1/L) (V) (n V)W (r/L) (2.3)

where L is the length of the side of the cubic simulation
sample that contains N particles and the function W(r) is
given by

‘P(r):Zerfc(aIr+n|)/}r+n| :real space (2.4a)

+ (1/m) ¥ |n| =2 exp[2miner — 7°|n|*/a?]

n#0
:reciprocal space (2.4v)
in which
erfc(x) =1 — 2712 fx exp( —t2)dt (2.5)
0

is the complementary error function. The parameter ¢ and
the integer coordinatesn = (/,m,n) are chosen in such a way
that a high accuracy of calculation is combined with a mini-
mum of computing work. In real space we consider only
n = (0,0,0) since the contribution of the other n’s are van-
ishingly small. Then the dipole—dipole potential energy,
force, and torque are, for particle / in the absence of an exter-
nal field, given by

Usp: = (1/L%) ¥ {(wew) 127~ ?a exp( — @®|x/L |*)/|x/L | + erfc(a|r/L |)/|r/L ]

JFEi

— (ur/LY(pr/LY [47~ %0 exp( — a@*|r/L |*)/|v/L |?

+ 6m2a exp( — @?|r/L |*)/|r/L |* + 3 erfc(a|r/L |)/|x/L |°1},

(2.6a)

Fpp: = (1/L>) 3 {[ (wyp)r/L + p, (wr/L) + w; (w;r/L) ]

J#i

X [47 "%’ exp( — @®[r/L |*)/|r/L |* + 61~ 2 exp( — a?|v/L |?)/|v/L |* + 3 erfe(alr/L |)/|r/L |°]
— (me1/L) (pr/L)x/L [87'2a® exp( — &?|r/L |2)/|r/L |?
+ 207~ %a® exp( — @®[r/L [*)/|r/L | + 307~ 2a’exp( — @?|r/L |?)/|r/L |°

+ 15 erfc(a|r/L |)/|t/L |71},

T5p: = (1/L?) ¥ { — w27 2a exp( — @?|/L |?)/|v/L |* + etfc(alr/L |)/[x/L |*]

J#Ei

+ (wr/L)r/L (47~ "% exp( — a?[r/L |?)/|r/L |?

+ 67~ 2q exp( — @?|r/L |*)/|t/L|* + 3erfc(afr/L |)/|t/L |1} .

Letting @ = 0 in Egs. (2.6), we recover the equations with-
out the Ewald summation, i.e., Egs. (2.4) of Ref. 1. Substi-
tuting Eq. (2.4b) into Eq. (2.3) and summing over particles
i and j, we obtain the total dipole—dipole potential energy in
the reciprocal space:

U (total) = (2n/L3) Zf(n) Z Z (n;'n) (p;n)
n20 77
Xexp(2minr/L) ,

where f(n) = exp( — 7*|n|?a?)/|n|?. This equation can be
simplified considerably by using the identity

z Z (p;n) (p;'m)exp(2min-r/L)

b=y
=Y (wm)exp(2minr, /L) 3 (p; n)
i J
Xexp( —2minr;/L) — 3 (p;n)?

=|S(n)|* - T(n), 2.7)

(2.6b)
(2.6¢)
|
where
S(n) =3 (w;n)exp( — 2min-r, /L), (2.8a)
T(n) = 2 (). (2.8b)

Hence,

Upg(total) = 27/L°%) ¥ f(m)[|S(n)|> — T(m)] .

n#0
(2.9a)

This trick, first suggested by Woodcock and Singer,® reduces
the computing time by a factor of the order of the number of
particles in the system. The dipole—dipole force and torque
for particle { in reciprocal space are obtained by applying the
same trick:

Fg = (87%/L*) 3 f(m)ni(p,n)[S(n)

n#0
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Xexp(2miner;,/L) — (s n) ], (2.9H)
Tsp = — (4n/L>) 2 Smn[S(n)
n*0
Xexp(2mrinr, /L) — (p,n)] . (2.9¢)

Letting @ = 0 in f(n) makes f(n) = 0 leaving the terms in
reciprocal space equal to zero.

The interaction between the fluid particles and the infi-
nite Lennard-Jones walls placed at distances equal to + o
and — o from the x—p planes of the rectangular box is given
by*

u,(z) =2mwe[0.4(0/2)'° — (0/2)*

— (vV2/3)(z/0 + 0.61/v2) 73] (2.10)
and the wall-particle force is derived as
F, (z) = 8mez[(0/2)"° — (0/2)*
— (V2z/40) (z/0 + 0.61/v2)~*]/22 (2.11)

Since there are two such walls, the Lennard-Jones wall-di-
pole interaction for particle 7 is given by

U, (z;)) =u,(z; —z) +u,(z;, — 2,), (2.12)
F,.(z,)=F,(z, —2)) + F,(z, — 2,), (2.13)
where z, and z, are the locations of the two walls. By defini-
tion the solvation force is the time-averaged force per unit

area exerted by all the particles upon each Lennard-Jones
wall*?:

du,(z, 2
ﬂ:-(l/M)(Z 0 (&) | AUk =2

7 Z; dz,

i

>, (2.14a)

where A is the area of the wall and U, is the interaction
potential between particle and wall. Another expression for
the solvation force due to Irving and Kirkwood'® is

dU,(dr,)

fi =NkT /h4 — (1/hA)<EzU dr;
i 7y
dUw(Zi) dUw(h—Z,-)
— h—z,) ——1),
+§i: [Zl dz; * #) dz; ]>

(2.14b)

where z; =z, —z;, r; = |r; —r;| and Uy represents the to-
tal interaction potential between particles / and j.

The simulation was carried out in rectangular boxes of
dimensions 7 X 7 X ho® where 4 /o and the number of parti-
cles N are set equal to 2.25 (38), 2.5 (41), 2.75 (63), 3.0
(71), 3.2 (73), 3.5 (78), 3.75 (95), 4.0 (103), 7.5 (206),
and 9.5 (264), respectively, for the several systems studied
by us. The equations of motion are obtained from the La-
grangian

1 1 ..
L=3 - mi+ ()3 —Lif

1 1
o X YTy — =3 >y
T 7

=y
+Z/1,<(,LL?—#2)+2|.L,»'E- (2.15)

The first two terms are the translational and rotational kinet-
ic energies, respectively, and the third and fourth terms rep-

resent the dipole—dipole and Lennard-Jones interaction en-
ergies. We use the method of constraints introduced by
Ryckaert et al.'? and adapted by Pollack and Alder'® to
Stockmayer fluids to treat the rotational part of the motion.
Thus the fifth term in the Lagrangian contains the constraint
variables which enable the components of p to be treated in
Cartesian rather than spherical polar cordinates by the in-
troduction of Lagrangian multipliers A, such that u? = |, |?
at all times. The last term in the Lagrangian comes from the
interaction of the dipoles with the external field.

The equation of motion for the translational degree of
freedom is

mi; = l‘vi‘E VT, + p-VE + F,

JEi

in which the last term is the Lennard-Jones force and VE is
zero in our systems. The corresponding equation for the ro-
tational degree of freedom is

(1/p?)fi, = z T, + E + 24,

j#

which contains the Lagrangian multiplier A;. Pollack and
Alder" used the Verlet algorithm to integrate their equa-
tions of motion; the variable A, was determined by solving a
quadratic equation arising from the condition that the mag-
nitude of the dipole moment was a constant at every time
step. Instead we use the leapfrog algorithm'* which requires
a different value of 1, to maintain this constancy; the details
of this calculation are provided in an appendix. The other
simulation parameters are the same as those used in our pre-
vious study.' The mass of each particle was taken as
6.63X 10~ *° kg and the mean reduced density p* = po” was
0.5605. The reduced temperature (7 * = k7T /€) was main-
tained at 1.18 (i.e., T'= 148 K)) except for a monolayer film
which was studied at temperatures ranging from 148 to 5 K.
The particles were endowed with a moment of inertia equal
t00.025mo” and a time step of 5 fs was used for the rotational

(2.16)

(2.17)

3 3
h=2.250¢ h=3.2 ¢
EZ w2
z =
N o
Q! Tt
0
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z/o z/o
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FIG. 1. The density and polarization profiles for a Stockmayer fluid
between plates separated at distances 4 of 2.25, 3.2, 4.0 and 9.5 o in the
presence of an electric field E = 10° V/m between the plates. The actual
density and polarization are obtained by multiplying p(z) and P(z) by o3
and po 3, respectively.
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FIG. 2. The solvation force in units of €/0° for a Stockmayer fluid between
plates separated by distances of # = 4.0 and 7.5 o as a function of the electric
field E.

and translational motions. Periodic boundary conditions
were applied in the x and y directions parallel to the walls
using the minimum image convention. Also, the Ewald sum-
mations discussed earlier to take account of the long-ranged
dipole—dipole interactions were performed in the x—y direc-
tions.®!" The computations were carried out in the micro-
canonical ensemble essentially as described by us in Ref. 1
starting with the equilibration of Lennard-Jones particles
between Lennard-Jones walls followed by the introduction
of point dipoles (z = 1.36 D) embedded in the particles and
the application of an external electric field. Averages were
computed after equilibration over several thousand time
steps ranging from 10 000 to 30 000 except for the studies of
monolayers when 250 000 time steps were used.

Il RESULTS AND DISCUSSION

In Fig. 1 the density and polarization density profiles of
Stockmayer molecules with a field E = 10° V/m between
Lennard-Jones plates are plotted for various plate separa-
tions A. As pointed out for 2 = 7.5 o in Ref. 1, the density
profile for a Stockmayer fluid in the presence of an electric
field is similar to the profile for a Lennard-Jones system*”

Lee, Rasaiah, and Hubbard: Dipolar fluid between charged plates. Il
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FIG. 3. The density profiles (near the left first layer) of Lennard-Jones and
Stockmayer films with 2 = 4.0 o when the field E ranges between 0 and
5% 10° V/m. The vertical line is located at z = 0.987 o where the wall-
particle force is zero.

except for a slight decrease in the singlet density at the peaks
adjacent to the walls and corresponding changes in the local
density further away so that the area under these curves,
which is equal to the number of particles in the system, is
conserved.

In Fig. 2, the solvation force £, on the plates is plotted as
a function of the electric field E for # = 4.0 and 7.5 ¢. The
solvation force due to a Lennard-Jones fluid between two
plates has been studied extensively by Snook and van Me-
gan* and by Magda er al.® The addition of a dipole—dipole
interaction to the Lennard-Jones molecules lowers the ener-
gy of the system as expected, and decreases the height of the
first peak in the density profile near the walls. This is accom-
panied by a decrease in the solvation force between the
plates, making it less repulsive (or more attractive) at all of
the plate separations studied by us. However, it is evident

TABLE 1. The solvation force in units of ¢/ according to Egs. (2.10a) and (2.10b) as a function of the plate
separation /1 for Lennard-Jones or Stockmayer molecules between Lennard-Jones walls with and without an
electric field E = 10" V/m at 141 K. (e = 119.8 k, o = 3.405 A,u=136D)

LJ-LJ walls
Stockmayer fluid Stockmayer fluid
Ref. 5 This work -LJ walls -charged LJ walls
h/o (2.14a) (2.14b) (2.14a) (2.14b) (2.14a) (2.14b) (2.14a) (2.14b)
2.25 —2.63 —2.63 —2.81 —2.79 —3.54 —3.52 —3.27 —3.29
2.5 —0.66 — 0.66 —0.73 —-0.74 —2.72 —2.73 —2.45 — 245
2.75 4.92 4.92 4.86 4.85 2.72 2.72 3.15 3.14
3.0 0.49 e 0.36 0.37 —0.90 —0.90 —0.73 —-0.73
32 —1.04 — 1.05 —1.04 - 1.05 —2.37 —2.36 -2.01 —2.02
35 0.0 0.01 —0.08 —0.08 - 1.97 — 197 —1.16 — 116
3.75 1.65 1.65 1.52 1.52 —0.75 —0.75 —0.10 —0.10
4.0 0.38 e 0.33 0.32 —1.43 —1.43 —-0.97 —0.97
7.5 0.22 0.26 0.31 0.28 — 1.08 - 1.09 - 0.81 —0.81
9.5 0.18 0.19 0.23 0.22 —0.68 —0.68 —0.45 —0.46
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FIG. 4. The solvation force (units €/0°) of Lennard-Jones (circles) and
Stockmayer fluids without an electric field (triangles) and with a field
E = 10° V/m (diamonds) between the plates as a function of the plate sepa-
ration A.

from Fig. 2 that the solvation force on the plates increases
when the electric field in the z direction is turned on. Al-
though the field exerts no force on the molecules, it gives rise
to a torque which tends to align the dipoles in the direction of
the field, thereby leading to more pronounced layering of the
fluid between the plates' and a shift of the first maximum in
the density profile to positions closer to the walls as the field
between the plates is increased (see Fig. 3). We find, from
Eq. (2.10), that the minimum in the wall-particle potential

lies at z=0.9870, and molecules located at positions
2 < 0.9870 must therefore contribute to the repulsive part of
the solvation force. An analysis of Fig. 3 shows that although
the height of the first peak in the density profile decreases
slightly as the field is applied, the number of particles in the
repulsive regions near the walls actually increases, producing
a solvation force that is more repulsive. Note that this force
is not the total force acting between the plates when the field
is turned on since this includes the direct electrical attraction
between the plates which is independent of the nature of the
fluid between them.

Table I contains additional details of the solvation force
as a function of 2 when the electric field E = 10° V/m. This
is calculated in two ways, from Eqgs. (2.14a) and (2.14b),
and the close agreement between the values obtained by
these different routes confirms the accuracy of our computer
simulations. A plot of the solvation force as a function of the
plate separation 4 in Fig. 4 shows that it is an oscillatory
function of 4, even in the presence of a field, due to the segre-
gation of particles into layers.' This was first suggested by
the measurements of the solvation force of a nonpolar fluid
by Horn and Israelachvili'! and confirmed by computer sim-
ulation studies on Lennard-Jones fluids between plates by
Snook and van Megan* and by Magda et al.’ Our studies of
these systems, which is the first step in our investigation of
Stockmayer molecules between plates (see Sec. II), are in
good agreement with these simulations. In Table II we pro-
vide details of the density profile { p(z)), the polarization
density profile (P, (z)), and the z component of the dipole
moment {u,(z)) for the system with a plate separation
h = 4.0 o at different values of the electric field. A similar

TABLE II. Molecular dynamics results of the local density ( p(z)), the component of the dipole moment
perpendicular to the wall { z, (z)) and the polarization density (P, (z)) for a Stockmayer fluid between Len-
nard-Jones walls separated by a distance 4 = 4.00 as a function of the electric field E across the plates.

E(10° V/m) {p(2)) {p.@))/p (P, (2))/u (p@)(p.())u

0.0 1 st layers 27 0.0 0.0 0.0
middle layer 1.5 0.0 0.0 0.0

0.5 2.7 0.15 0.42 0.41
1.4 0.20 0.34 0.28

1.0 2.7 0.31 0.86 0.84
1.4 0.31 0.58 0.43

1.5 2.6 0.46 1.26 1.20
1.5 0.47 0.88 0.71

2.0 2.7 0.58 1.66 1.57
1.5 0.55 1.03 0.83

2.5 2.7 0.69 1.93 1.86
1.6 0.64 1.28 1.02

3.0 2.6 0.76 2.13 1.98
1.5 0.68 1.31 1.02

35 2.7 0.81 2.27 2.19
1.5 0.69 1.33 1.04

4.0 2.7 0.83 2.37 2.24
1.5 0.71 1.36 1.07

4.5 2.7 0.85 2.45 2.30
1.6 0.72 1.42 1.15

5.0 2.8 0.86 2.46 2.41
1.6 0.74 1.45 1.18
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FIG. 5. The component of the dipole moment { u,(z)) at 141 K in the
direction of the electric field E as a function of E for plate separations of 4.0
o (three layers) and 2.25 o (monolayer).

study for a larger plate separation of # = 7.5 & was discussed
in our earlier paper’ where it was found that the polarization
density of each layer (P,(z,E)) = (p,(z,E)u,(z,E)) was
nearly equal to the product of { p,(z,E)) and {u, (z,E)),
when the fluctuations in the numbers of particles in the layer
were small. With 2 = 4.0 o there are just three layers of par-
ticles (two outer layers next to the walls and a middle layer
as shown in Fig. 1) between the plates, and the agreement
with our approximation is found (see Table IT) to be good,
especially for the first layer. In Fig. 5 we plot (u,(z,E))
against E for this system (# = 4.0 o) and for the monolayer
system (4 = 2.25 o) and compare this with the Langevin
function L(y) with y = ( u|E|/kT) which predicts values
for { u,(z)) that are too high. Note that for a monolayer
( i, (z)) appears to be a linear function of the electric field at
141 K for E < 5 10° V/m. Better agreement with the Lan-
gevin function is found’ for thicker films (4 = 7.5 ), from
which it appears that this function is less accurate as an ap-
proximation for (u,(z)) as the dimensionality changes
from three to two.

The unusual behavior of the monolayer film was investi-
gated further as a function of temperature and the electric
field. Before discussing the dynamical properties of this sys-
tem we present in Table III our calculations of the different

terms which contribute to the total energy as a function of
temperature and the electric field. Comparison may be made
with the corresponding energy terms for a thicker film of
dipoles (4 = 4.00) in Table IV. The total energy for a Stock-
mayer fluid of mass 7 and moment of inertia I with dipole
moment p between Lennard-Jones plates in the presence of
the electric field E is

U= 12mu}+ (1/p*) 31721 —1/2 33 p Top;
i i j

i#j

+1/222U§’+2Uw—2pﬁ-E. 3.1
TG 7 7

The first two terms represent the translational and rotational
kinetic energies, respectively, and the third, fourth, and fifth
terms are the dipole-dipole, Lennard-Jones, and wall-parti-
cle interaction energies. The last term gives the energy of
interaction between dipoles and the external electric field E.
For a given electric field, the total energy of the sytem must
be conserved since the simulation is carried out in the micro-
canonical ensemble. Table III and 1V show how each energy
term changes when the electric field E = 10'° V/m is turned
on with plate separations of 2.25 ¢ and 4.0 . We see from the
tables that, although there are significant changes in the di-
pole—field (DE) and dipole—dipole (DD) energies when the
field is turned on, alignment of the dipoles with the field
makes the DD interaction energy positive at E = 10'° V/m
only for the monolayer system (4 =2.25 o) confined
between two plates.

Snapshots of the particles in this layer at 141 K are
shown in Figs. 6 at fields ranging from zero to 10'° V/m; the
magnitude and length of the arrow drawn in each circle of
radius 0/2 is proportional to the component of the dipole
moment in the (x-p) plane parallel to the wall. The dipole
autocorrelation functions are shown in Figs. 7 and 8. At zero
field we have verified that the dipole autocorrelation func-
tion decays to zero at long times,' which is not the case at
finite fields. Note that the polarization normal to the plates
(z) increases and saturates as the field goes from 10° to 10'°
V/m. Also note that the total dipole auto correlation func-
tion decays much faster at the highest field than at E = 0 or
10° V/m. Apparently, the very slow relaxation of the trans-
verse component at lower fields may be attributed to the
dynamics of the loop/chain configurations discernible in
Fig. 6. Figure 6 also shows that at 141 K, the dipoles, which

TABLE III. Thermodynamic results at 7= 141 and 5 K for a monolayer film of Stockmayer molecules
between Lennard-Jones walls separated by a distance & = 2.250, Uy, Uy, Upg, Upp, and Uy, are the Len-

nard-Jones, particle-wall, particle~external field, dipole—dipole and total energies, respectively, while T,

trans?

T, are the translational and rotational temperatures in degrees Kelvin. All the energies are in reduced units of

Ne.

E(10° V/m) (Uu ) WUy) <UDE> { Upp ) (Utolal ) <Ttrans ) <Trot )
0.0 — 1.45 —7.62 0.0 —6.95 — 13.03 141.4 141.5

1.0 — 1.49 - 7.62 —0.45 — 6.66 —13.23 141.3 141.8

10.0 -~ 2.10 —6.93 —31.92 3.67 —37.84 141.3 141.5
0.0 — 1.63 — 7.87 0.0 — 10.52 — 19.82 5.0 51

1.0 — 1.86 —7.86 —03 - 10.25 —20.10 5.2 5.4

10.0 —2.52 - 1719 — 33.87 3.87 — 39.62 5.1 5.2

J. Chem. Phys., Vol. 86, No. 4, 15 February 1987
Downloaded 05 Jun 2004 to 130.111.64.68. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Lee, Rasaiah, and Hubbard: Dipolar fluid between charged plates. il 2389

TABLE IV. Thermodynamic results at 141 K for the Stockmayer molecules between Lennard-Jones walls
separated by a distance # = 4.0 0. The column headings and units are the same as in Table III.

E(10° V/m) {Uy) {Uy) (Upg) (Upp) (Vo) (T eans) (Tooe?
0.0 - 3.27 —3.23 0.0 — 6.96 — 10.50 141.7 141.5
10.0 — 3.58 —3.10 —32.70 —2.69 —39.11 141.8 141.8

are mainly oriented parallel to the walls in chains at zero
field, are continuously transformed, with increasing electric
field, into a state in which they are perpendicular to the walls
at very high field. However, the pair distribution functions at
141 K (Fig. 9) do not show any compelling evidence of a
transition to an ordered lattice even at the highest field 10'°
V/m considered by us. As we shall see below, the system
behaves differently at low temperature.

The snapshots of equilibrium configurations at zero
field in Fig. 10 indicate an increase in chain length accompa-
nied by the formation of close packed layers as the tempera-
ture is lowered. Comparison of the velocity auto correlation
function (Figs. 11) at 141 and 5 K indicates tht the dipoles
are vibrating about their equilibrium positions in the x—y
plane at 5 K and that diffusion is negligible at this tempera-
ture. This suggests a phase transition below a critical tem-
perature determined by the ratio of the energy of the dipoles
at contact to the thermal energy as the relevant parameter.

FIG. 6. Snapshots of a monolayer of Stockmayer dipoles between plates
(h = 2.25 ¢) at 141 K and fields E ranging from 0 to 10'° V/m. The length
of the arrow in each circle is proportional the component of the dipole mo-
ment parallel to the wall.

In addition, an examination of the dipole autocorrelation
functions (not shown) clearly indicates a frozen orienta-
tional configuration at 5 K with very small librational mo-
tion in the x—p plane.

In Fig. 12 we see how the equilibrium configurations of
the dipoles in the monolayer are altered as the electric field
between the plates is increased at 5 K. We are able to distin-
guish between three states (not necessarily separate phases),
one of which is the chain-like structure observed in the ab-
sence of a field which has already been discussed. As the field
is increased we next see a system of closely packed parallel
chains of dipoles segregated into ferroelectric domains of
opposite polarization. The orientation of dipoles in these do-
mains is still largely perpendicular to the field [{ x,(2)) is
relatively small] and adjacent layers of particles at the boun-
daries of the domains are displaced by half a molecular diam-
eter thereby lowering the energy of the dipoles which are
oriented in opposite directions at the boundaries. The den-
sity of this system is higher than the density at zero field,
which suggests electrostriction. The pair correlation func-
tions at zero field and a field of 10° V/m are qualitatively
similar (Figs. 13) except for the appearance of an additional
peak at 1.41 o and satellite peaks at larger distances which

8 e 1)/ 1 T=141K
6 E=109 V/nm
.4
CHxOUx O+ g yl0))/ 12
.2 /i
0 N\(kathat /b
- .2
<Eite 3(0))/ 2
.8 E=0
.8 I
xR0+ py (D py(0))/ 2
.4
.2 y
CuaOpzO)/ 12
0. R
25 1 2 3 4

t(ps)

FIG. 7. The dipole auto correlation function of the Stockmayer monolayer
at 141 K and E = O and 10° V/m. The components parallel and perpendicu-
lar to the wall are also shown.
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FIG. 8. The dipole autocorrelation functions of the monolayer dipolar sys-
tem at 141 K when the field between the plates is 10'® V/m. The compo-
nents parallel and perpendicular to the walls are also shown.

we ascribe to the correlations between particles in adjacent
layers at the boundaries of the ferroelectric domains. A com-
parison (Fig. 14) of the velocity autocorrelation functions at
141 and 5 K at a field of 10° V/m suggests that decreasing
temperature (see Fig. 12) is still the dominant factor in caus-
ing the particles to lose their diffusive motion and vibrate
about their equilibrium positions at 5 K. A further increase
in the field, however, leads to a pronounced alignment of the
dipoles in the direction of the field and this gives rise to re-
pulsion between dipoles and therefore a spatially less tightly
bound configuration at 5 K. The reorientation of the dipoles
parallel to the field is 100% complete at E = 10'° V/m (Fig.

4
T=141K
5 E=1010v/m
0
A E=109V/n
~ 2
o]
0
E=0
2
00— = 3
r/o

FIG. 9. Radial distribution functions of the monolayer of dipoles as shown
in Fig. 6 at 141 K and several different values of the electric field.

FIG. 10. Snapshots of a monolayer of Stockmayer dipoles between plates
(h = 2.25 o) at zero field and temperatures ranging from 141 to 5 K. See the
caption of Fig. 6 for other details.

15). Note thatat 141 K ( i, (z))/|p| is 0.93 at this field. The
velocity auto correlation function (Fig. 16) suggests that the
particles have regained their diffusive motion. The diffusive
motion of the particles is thus enhanced at the very highest
fields when the particles are aligned with the field. This is
true not only at 5 K but also at 141 K, as shown by the mean
square displacement in the xy plane which is plotted as a

0. /\ /\/\ //\/\M_ﬂ
T

0 1 2 3 4 5
t{ps)

FIG. 11. The velocity autocorrelation functions of the molecules in a mono-
layer of a Stockmayer fluid between plates (4 = 2.250) at 141 and 5K and
zero field.
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E = 1010 v/n

FIG. 12. Snapshots of a monolayer of Stockmayer dipoles between plates
(h =2.25 0) at 5 K and fields E ranging from 0 to 10'° V/m.

function of time in Fig. 17. Finally, the radial distribution
function, g(r) at 5K, is shown in Figs. 18 when E = 10'°V/
m. The structure observed (see Fig. 12) at 5 K suggests an
imperfect (two-dimensional) triangular lattice.

Although our initial interest was in the behavior of a

10
T=5K
8 9
E=10 V/m
(3]
4
2L L bhusbdn
19
«v O / VAV
of
8 E=0
6
4
- M M
0
3 4
1 2r/o’

FIG. 13. Radial distribution functions for the Stockmayer fluid monolayer
at 5K and E =0and 10° V/m.

T=141K

FIG. 14. The velocity autocorrelation functions of the molecules in a mono-
layer of a Stockmayer fluid between plates (4 = 2.25 o) at 141 and 5K and
a field of 10° V/m. Figure 11 shows the correlation functions at zero field.

Stockmayer fluid between plates separated by several molec-
ular diameters, our attention has become more focused on a
dipolar monolayer in an external field over a range of tem-
peratures. Though the equilibration time for such systems
can be extremely long, it appears that meaningful simula-
tions are well within the capability of modern computers. It
now seems that a thorough MD investigation of the phase
transitions in these systems is warranted.

While there exist an enormous literature on monolayers,
detailed studies of dipolar fluid monolayers appear to be
sparse. Phase diagrams of Langmuir monolayers of polar
molecules were recently obtained analytically by Andelman,
Brochard, and Joanny.'” These authors used a Landau-
Ginzburg expansion of the free energy to derive the near-
critical behavior, while the low temperature structure was
obtained via free energy minimization. In the case of dipoles
oriented normal to the layer, the competition between long-
range repulsive forces and short range van der Waals inter-

{, ;
h=2.25¢
8
T=141K
G
(M2(z,E)) T=5K
By
2
05 2 4 6 8 10
£ (10°vm)

FIG. 15. The component of the dipole moment ( g, (z)) in the direction of
the field as a function of the electric field E for the monolayer (4 = 2.25 o)
at 5 and 141 K.
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T=141K
—
~% 1 2 3 4
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FIG. 16. The velocity autocorrelation functions of the molecules in a mono-
layer of a Stockmayer fluid between plates (A = 2.25 ¢) at 141 and 5 K and
afield of 10'° V/m. Figures 11 and 14 show the correlation functions at zero
field and a field of 10° V/m.

actions gives rise to novel phases in which the concentration
is not uniform but rather has periodic (in-plane) oscilla-
tions. Also of relevance are the “interfacial colloidal crystal”
melting transition studies by Kalia and Vashista,'® Pier-
anski,'” and Bedanov et al.'® The MD simulation’® indicates
a first-order melting of the triangular lattice which occurs
when the ratio of the average potential to kinetic energy falls
below 60. A very similar transition occurs when a monolayer
of micron-sized polystyrene spheres is suspended in a mag-
netic colloidal dispersion (ferrofluid) and subjected to a
magnetic field applied normal to the layer.'® The spheres
acquire an apparent magnetic moment proportional to the
external field, and the long range repulsive dipolar interac-
tions induce a transition to a triangular lattice at some criti-
cal field. This system can be observed directly with a scan-

.5
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N/'\
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<]
o .2
»
<
.1
E=0,10%/n
E=10!10v/n
0. /
0 1 2 3 4 5
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FIG. 17. The mean-square displacement of molecules parallel to the plates
for a Stockmayer fluid when 4 = 2.25 cat 141 and S K and fields E = 0, 10°,
and 10'° V/m, respectively.

(S
T=5K
~ 4
% E=1010v /m
Nt
g
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FIG. 18. Radial distribution function for the Stockmayer fluid monolayer
at 5 K and a field of 10'° V/m.

ning electron microscope, and some striking photographs
appear in Skjeltorp’s papers.'®
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APPENDIX: ROTATIONAL MOTION OF DIPOLES AND
THE LEAPFROG ALGORITHM

The equation of motion [Eq. (2.17)] for the rotational
degree of freedom of dipole / may be written as

l:ii(t)=a[Ri(t)+2/1iui(t)], (A1)
where @ = u*/I and
R, (1) =) T (1) +E, (A2)

iF
in which T is the dipole interaction tensor [Eq. (2.2)] and E
is the external field. The leapfrog algorithm'* for this motion
implies that

B (e 4+ At /72) = p (t — At /2) + At (1) (A3)
and
W, (¢ + Ar) =, (£) + A, (2 + A2 /2) . (A4)
Combining Egs. (A1), (A3), and (A4) we obtain
W, (¢ + Ar) = p, (1) [ 1 + 2ak,(A1)?]
+ A (¢ — At /2) + a(A2)°R, (1) .
(A5)
Applying the constraint
B () (1) =4 (A6)

to Eq. (A5) and taking Az = 1 for convenience, leads to a
quadratic equation for the Lagrangian multiplier 4,

Al +204; +¢;=0, (A7)
where

¢, =2a(u*+D+aG), (A8)

¢, = 4a’u?, (A9)

¢c;=B+Ca*+2D+2a(G+F), (A10)
and
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B=p,(t—At/2)p,(t — A2/2), (All)
C=R,(0R; (1), (A12)
D = p; (t)p,(t — Az /2), (A13)
F=p,(t—At/2)R; (1), (Al4)
G =, ()R (1). (A1l5)

Taking the solution to Eq. (A7) with the positive sign in
front of the square root, we have

Ai=[—c + (& —eye3)?) /e, . (A16)
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