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is adequately detected in measurements of NO, will contribute 
significantly to the proper modeling of the phenomenon. 
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We report the results of a computer simulation and analysis of diffusion-controlled bimolecular recombination on a two- 
dimensional square lattice with the possibility of trapping. The following reactions are considered: (Ia) A + A - annihilation, 
(Ib) A + T - AT, (IC) AT + A - T; (Ha) A + A - annihilation, (IIb) A - AT, (IIc) AT + A - annihilation. Reaction 
I refers to recombination with bimolecular trapping (b), while reaction I1 refers to recombination with unimolecular trapping 
(b). In either case the time dependence of the trapped population (AT) is described remarkably well by a mean field theory, 
while the free population (A) decays as a stretched exponential at long times (exp(-t"), a - However, it is possible 
to distinguish between mechanisms I and I1 simply by monitoring a single particle density (A or AT) for a range of initial 
conditions. 

1. Introduction 
Within the past few years there seems to have been a renais- 

sance in the theory of diffusion-controlled chemical reactions. 
While earlier work was based on refinements of the enormously 
popular Smoluchowski concentration gradient theory or focused 
on the more formal aspects of the time evolution of an N-particle 
distribution function in some configuration space,'-1° more recent 
developments have tended to emphasize the rather surprising and 
spectacular consequences of fluctuation-dominated kinetics; Le., 
microscopic concentration fluctuations driven by random thermal 
fluctuations are magnified as the reaction progresses, so that an 
initially uniform system becomes macroscopically inhomogeneous 
and the concept of a reaction rate constant becomes invalid."-25 
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By a combination of analytic theories and computer simulations, 
it has been discovered that a large variety of simple reactions 
exhibit this anomaly; and in fact, one is hard put to come up with 
an example of a diffusion-controlled reaction in which fluctuations 
do not, in some time regime, play a major role. The two most 
carefully studied examples are13-25 

(1. la)  
A + B - B + C  (1.lb) 

the first being an irreversible bimolecular recombination (or an- 
nihilation) while the second is irreversible catalysis (B is the 
catalyst which transforms A into C). Not surprisingly, the spatial 
dimensionality d (Euclidian or fractal) in which the reaction occurs 
is a key parameter, and there has been considerable emphasis on 
identifying the "upper critical dimension" d,-the dimension at 
and above which fluctuations are not dominant and a mean field 
description is valid. Thus for reaction 1.la d ,  = 4, if the initial 
concentrations of A and B are equal, while for (1.1 b) d ,  = m i f  
the catalyst is immobile. Moreover, the long time decay kinetics 

A + B - annihilation 
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site not containing a trap is just as likely to contain an A as any 
other trap-empty site and that no site can be multiply occupied. 
At each time step each A moves one lattice spacing in a randomly 
chosen direction, their motions are completely uncorrelated, and 
an annihilation or trapping event occurs instantly whenever two 
(or more) A’s occupy the same site simultaneously or whenever 
A jumps into a trap. Even without most of these stipulations we 
can immediately infer that 

A( t )  - t-’ intermediate times (1.8a) 
A(?)  - exp(-t) long times (1.8b) 

where (1.8a) reflects the “free A” recombination (1.7a) and (1.8b) 
indicates that, at sufficiently long times, the T and AT populations 
are uniformly distributed and are nearly constant in time, so that 
the depleted A’s are effectively diffusing in a homogeneous ab- 
sorbing medium. An external “observer” monitoring A(?) and 
aware of (1.7a) but not (1.7b) or ( 1 . 7 ~ )  would be forced to 
conclude (with considerable confusion) that the order of the re- 
action is indefinitely large, even though the kinetics is bimolecular. 
Also recall that, in the Smoluchowski picture (d  = 3), the reactive 
flux into the target molecule is proportional to the sum of the 
diffusion coefficients of target and reactant species, which implies 
that immobilization (of the minority species, at least) will tend 
to impede the reaction. However, eq 1.8 predicts an acceleration 
of the reaction as time goes on and the mobile species is in the 
minority. Thus, we have a simple example in which a modification 
of the dynamics (by irreversible trapping) has a profound effect 
on chemical reaction kinetics. 

Not surprisingly, a more scrupulous analysis leads to the 
conclusion that eq 1.8b is invalid a t  long times and that a 
“stretched” exponential decay is what actually occurs. Note that 
if the free A recombination mechanism is turned off by eliminating 
eq 1.7a, then as far as the A population is concerned, the long 
time behavior of A(t )  is described by the stretched exponential 
(1.4). This, then, implies that some features of reaction 1.7 will 
be dominated by concentration fluctuations while others should 
be more or less accurately described by a simple “mean field” 
theory (MFT), a theory in which, for instance, the position of each 
particle is randomized after each time step (perfect mixing). This 
idealization is particularly attractive, inasmuch as straightforward 
combinatorial reasoning gives the rate constants; these are inserted 
into the appropriate kinetic equations, and the concentrations of 
the various species can be obtained via numerical integration or 
mathematical analysis. One then makes a direct comparison with 
computer simulations or experiments for a wide range of initial 
concentrations. This procedure, which we follow in most of this 
study, enables us to address some of the more practical issues likely 
to be faced by kineticists worried about the range of validity of 
the equations they write down, as well as to probe some of the 
remarkable phenomena associated with the spontaneous break- 
down of macroscopic spatial homogeneity. 

Another important feature of this study is a detailed comparison 
of “bimolecular” vs “unimolecular” trapping. Consider the reaction 
scheme 

A + A - annihilation (1.9a) 

A - AT (1.9b) 
A + AT - annihilation ( I  .9c) 

and compare this with reaction 1.7. In (1.7) the trapping sites 
T are randomly distributed and are “immortal” by eq 1 . 7 ~ .  In 
eq 1.9b, however, immobilization occurs a t  a certain rate or 
frequency which is independent of particle location, and so reaction 
1 . 9 ~  simply annihilates a free A along with a trapped A without 
producing a stationary trap as in eq 1 . 7 ~ .  A physical realization 
of this unimolecular trapping is one in which the rate-determining 
mechanism is a random, temporal fluctuation in the internal state 
of a free A. Therefore, by studying both reaction schemes (1.7) 
and (1.9), one can compare the chemical effects of topological 
vs temporal randomness in the trapping mechanism. 

This paper is organized as follows. In section I1 we discuss 
simulation details for free annihilation and introduce the mean 

is quite sensitive to initial concentrations. For instance, if A(r) 
(the number density of A) and B ( t )  are initially identical, then 
considering ( 1  . la)  for large t13,15J6 

A(t )  - t-I d 1 4  

A(t )  - t-d14 d I 4 (1.2) 
while if  A(0)  < B(0)  

A(t )  - exp(-r) 

A(t)  - exp(-t/ln t )  

d I 3 

d = 2 

A(t )  - exp(-t1/2) d = 1 (1 .3)  
at long times. For reaction 1 . Ib  and a static random distribution 
of traps A, one has a s y m p t o t i ~ a l l y ~ * ~ ~  

A(t )  - exp(-td/(d+2)) 0 < d < a (1.4) 
What is typically observed in simulations is that a homogeneous 
kinetics description breaks down very fast in one dimension, retains 
its validity a good deal longer for d = 2, and except in the case 
of algebraic decay ( t - * ) ,  one has to monitor the system for ex- 
tremely long times before fluctuations begin to dominate in d = 
3. d = 2 seems to be the ideal dimension in which to perform 
simulations inasmuch as topological complexity is present (particles 
can get around on another without reacting); the transition to 
fluctuation-controlled kinetics is rather unambiguous and does 
not require enormously long runs and an exact analytical de- 
scription of the kinetics over the entire time domain is typically 
impossible, so that the outcome of the simulation is a genuine piece 
of experimental evidence and not simply the verification of some 
algorithm. Another reason to study reactions in two dimensions 
is that chemical reaction kinetics on surfaces is a subject of 
considerable practical importance. 

An interesting variation of ( I . la)  and (1.lb) is bimolecular 
recombination involving a single species (A), for which the 
Smoluchowski “target flux” description is not expected to 
h ~ l d . ’ - ’ ~ * ’ ~  In this instance one has 

A + A - annihilation (1.5) 

with 

A(t )  - t-d/2 

A(t )  - t-’ In t 

d < 2 

d = 2 

A(t )  - t-I d > 2 (1.6) 
The In ( t )  correction is not an important feature in our study, so 
for all practical purposes we can take d, = 2 for this rea~t i0n . I~  

Now imagine a reaction scheme that incorporates (1.1 a), ( I .  1 b), 
and (1.5) and suppose that the composite reaction takes place in 
two dimensions. An example would be 

A + A - annihilation (1.7a) 

A + T + A T  (1.7b) 

A T + A d T  ( 1 . 7 ~ )  

where T refers to a stationary species, the members of which act 
as “traps” or immobilization sites for the diffusing A particles. 
Thus, (1.7a) refers to a bimolecular annihilation involving free 
A’s, (1.7b) refers to bimolecular trapping, and (1 .7~)  represents 
an annihilation event involving a free A and a trapped A, with 
the subsequent regeneration of the trapping site. Physical real- 
izations of this scheme include free-radical surface recombination 
in a heterogeneous (trapping) medium or even dimerization of 
macromolecules (enzymes or proteins) with the possibility of 
immobilization. Suppose, for the time being, that concentration 
fluctuations do not dominate the kinetics, that the various reactions 
involve only short-range encounters, and that the reactions are 
diffusion limited. Further, suppose that the initial condition 
consists of a uniform “quasi-random” distribution of A’s and traps 
(T), with the constraint that no A initially occupies a trapping 
site (lattice terminology). By “quasi-random” we mean that each 
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Figure 1. Simulation (numerical) results for A + A - annihilation are 
compared with MFT (eq 2.4) with k = 3/4 and A(0)  = 0.1. Exact 
agreement is observed at short times while at longer times the departure 
from k = 3/q is obvious. In either case A(t)  - t-l for long times. Note 
that the evolution of correlations suppresses the reaction rate relative to 
MFT. 

field kinetic equations, along with their solutions for annihilation 
with traps. Section 111 discusses the simulation of annihilation 
reactions on a surface in the presence of traps and compares the 
results of various “hopping” algorithms. It provides an in-depth 
comparison of the consequences of unimolecular vs bimolecular 
trapping, as well as a comparison of simulation results with MFT. 
In  the latter part of this section we present evidence for the 
breakdown of MFT and discuss a theoretical model which might 
help to account for this behavior. Our results are discussed in 
section IV. The Appendix contains the mathematical details of 
our MFT/combinatorial derivation of the reaction rate constants. 

11. Free Annihilation and the Mean Field Kinetic Equations 
for Annihilation with Traps 

We first consider annihilation reactions in the absence of traps. 
For example, the reaction 

A + A - annihilation 

is expected, assuming mean field behavior, to follow second-order 
kinetics 

(2.1) 

dA(t)/dt = -kA(t)* (2.2) 

in which the concentration A(t) of A changes with time according 
to the relation 

A(O)/A(t) = 1 + A(0)kt (2.3) 

We have studied a simple model for this reaction by computer 
simulation of a two-dimensional square lattice with 10000 sites 
and periodic boundary conditions in which each lattice site is free 
or occupied by a particle. In the simulation every particle is moved 
in each time step along one of four directions with a probability 
of simultaneous occupancy of a lattice site leads to annihilation 
by pairs. Since all of the free particles are moved in each time 
step, two free particles on adjacent sites cannot annihilate each 
other. In a variation of this procedure we can also restrain a 
particle from moving by introducing a “staying probability” ps;  
the probability of moving in any one of the four directions around 
a site at each time step is then equal to (1 - ps)/4. Now the 
annihilation of two adjacent particles, one free and the other 
immobilized, is possible. 

A combinatorial analysis (which assumes equal probability of 
occupation for all sites) leads to the rate equation (see Appendix) 

dA(t)/dt = -(3/4)A(t)* + (1/4)A(t)) - (1/32)A(t)4 (2.4a) 

when the staying probability ps  is zero. This implies a rate constant 
k for free particle annihilation equal to 3/4 when only binary 
collisions are important. The computer simulations with A ( 0 )  
= 0.1 (Figure I ) ,  averaged over 1000 initial configurations, agree 
with the calculated k at short times but also show that the apparent 
rate constant k is less than 3 / 4  for long times. This implies that 

COMPUTER SIMULATION 
t = O  SO x SO A ( o F  0.5 

t =10 .... ... .. . .  . . . . .  ......... .. .. .I 1. ........... -: . . .  . . . .  . . . .  . .  .. . . . . . . . .  . . . . .  .. 
. .  . .  . ..... .. .... . . .  a. ......... 

. . . . . .  .. .: . .  
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Figure 2. A snapshot of the reaction A + A -annihilation on a square 
lattice containing 2500 sites and 1250 particles initially. At each time 
step each particle executes a jump to a randomly chosen nearest-neighbor 
lattice site (with equal probability), and pair annihilation occurs instantly 
whenever two or more A’s occupy the same site simultaneously. Periodic 
boundary conditions are imposed. 

i I 

I 
0. . 5  I .  I . 5  2 .  

t j l000  
Figure 3. Simulation results for bimolecular recombination without 
trapping for various “staying probabilities” ps ,  with 0 5 ps  5 Note 
that A(?)  decays fastest for ps  = p s  not equal to zero allows a pair 
of nearest-neighbor A’s to recombine. 

the evolution of correlations as the reaction proceeds affects the 
rate constant at long times. Figure 2 shows snapshots of the 
reaction on a smaller lattice (50 X 50) at the beginning ( t  = 0) 
and after 10 time steps ( f  = 10) for the case where half the lattice 
sites are occupied at the start (A(0)  = 0.5). Prominent vacancies 
or holes are seen even after 10 time steps. In Figure 3 we have 
the corresponding results for the concentration of A(t )  as a function 
of time for different staying probabilities ps .  It appears that a 
small increase in p s  from zero increases the concentration of free 
A’s, while a further enhancement of p s  decreases the population 
of free particles below what is expected a t  a staying probability 
of zero. This crossover in the free particle concentration appears 
to take place at a critical staying probability p: = for a square 
lattice which is the theoretical prediction based on a combinatorial 
analysis (see Appendix). The analysis, which assumes a uniform 
distribution of A’s, provides a relationship between the free particle 
rate constant k and the staying probability p .  For a square lattice 

k = 3/4  + p s / 2  - (5/4)ps2 (2.4b) 

from which it is seen that k has a maximum at p s  = 
is zero at p s  equal to unity. 

and k 
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A finite staying probability implies a fleeting immobilization 
of a particle, and it is natural to extend this idea further and 
enquire how the concentration of free A’s is affected by permanent 
immobilization in traps. We consider two possibilities, bimolecular 
and unimolecular trapping, as discussed in the Introduction, where 
(a) traps of density T(0) are distributed randomly over the lattice 
sites or where (b) there are no traps at the beginning but the free 
particles become trapped or immobilized in each time step with 
a probability k’. In either case a trapped particle is annihilated 
with a rate constant kT when a free particle moves in on it; this 
is also the rate a t  which particles are trapped in the bimolecular 
trapping reactions. For unimolecular trapping, the annihilation 
of a free A and a trapped A produces a vacant lattice site, while 
the same reaction in bimolecular trapping restores a vacant trap 
at  the lattice site. The process by which trapped A’s are produced 
in the bimolecular and unimolecular reactions inevitably leads 
to a finite concentration of trapped A’s a t  long times where the 
prospect of further annihilation vanishes along with the free A 
concentration. 

The computer simulations of bimolecular and unimolecular 
trapping/annihilation reactions are discussed in section 111. The 
analysis of the results makes explicit use of the mean field kinetic 
rate equations which we will now consider. 

(a) Bimolecular Trapping Reactions. We have the reactions 
k 

A + A - annihilation (2.5) 

A + T - A T  (2.6) 

A T + A - T  (2.7) 

where A(t) and AT(t) are the densities (or concentrations) of free 
particles and trapped particles, respectively, a t  time t ,  and T(t) 
is the density of empty traps. Since the total density of traps 
(empty and filled) is conserved 

(2.8) 

kT 

kT 

T(0) = T(t) + AT(t) 

The mean field kinetic equations are 

dA(t)/dt = -kA(t)2 - kTA(t) T(t )  - kTA(t)  AT(^) 

= -A(t)[kA(t) + k,T(O)] (2.9) 

(2.10) dT(t)/dt = -dAT(t)/dt = -kTA(t)[T(t) - &(t)] 

Integrating eq 2.10 and making use of (2.8), one finds that 

 AT(^) = (T(0)/2)[1 - eXp(-2k~r(t))] (2.1 1) 

where 
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(2.17) Z(t)  = ( I / k )  In [1 + K(l  - exp(-kTT(0))t] 

Using this in eq 2.1 1 it follows that 

Z(t) = ] ‘A( t ’ )  dt’ (2.12) 
0 

It follows from eq 2.1 1 that T(0)/2 is an upper bound for AT(m); 
that is to say, no more than halfthe number of traps can befilled 
a t  the end of the bimolecular recombination reaction with trap- 
ping. Integration of eq 2.9 leads to 

(2.13) 

where 

K = a / b  (2.14) 

in which 
b = kT/k (2.15) 

is the ratio of the rate constants for free and trapped particle 
annihilations and 

a = A(O)/T(O) (2.16) 

is the ratio of the concentrations of free particles to traps a t  the 
beginning. On substituting eq 2.13 in eq 2.12 and integrating, 
it is found that 

A s t - + m  

If K >> 1 or a >> 1, AT(m) - T(0)/2. Defining the total density 
of A’s, ATo,(t) = A ( t )  + AT(t), we have from eq 2.13 and 2.18 
that ATol(m) = AT(-) since the number of free particles is zero 
at infinitely large times. 

In the limit when the free particle annihilation is turned off 
(Le., k = 0), K is zero, b is infinite, and A ( t )  decays exponentially 
with time (see eq 2.13): 

A(t) = A(0)  exp(+T(O)t) (k = 0) (2.20) 

Integrating A(t) with respect to time (or upon expanding the 
logarithm in eq 2.17), it is found that 

Z(t) = (U/kT)(l - eXp(-kTT(o)t) (k = 0)  (2.21) 

Inserting this in eq 2.1 1, we obtain an expression for the number 
of particles trapped at  time t when there is no free particle an- 
nihilation: 

AT(t) = (T(O)/2)[ 1 - exp(-2a( 1 - e-k~T(o)t))] (2.22) 

At infinitely large times (t - a), this reduces to 

AT(m) = (T(O)/2)(1 - e-20] (2.23) 

Equations 2.22 and 2.23 agree with the K = 0 and b = m limit 
of eq 2.18 and 2.19, respectively. 

(b) Unimolecular Trapping Reactions. For this case we have 
the series of reactions 

k 
A + A - annihilation (2.24) 

A - AT (2.25) 

(2.26) 

k’ 

kT 
AT + A - annihilation 

The rate equations are 
dA(t)/dt = -A(t)[kA(t) + k’+ k ~ A ~ ( t ) l  (2.27) 

dAi,(t)/dt = A(t)[k‘- k,A~(t)] (2.28) 

On integrating eq 2.28, we have 

 AT(^) = (k’/kT)[l - eXp(-k~l(t))] (2.29a) 

where Z(t) is given by eq 2.12. Note the similarity of eq 2.29 to 
eq 2.1 1. Since the integral I(-) is positive, it follows that k’/kT 
is an upper bound for AT(m). Substituting eq 2.29 in eq 2.27, 
one obtains 

dA/dt = -A(t)[kA(t) + 2k’- k’eXp(-k~l(t)] (2.29b) 

where I ( t )  is defined by eq 2.12. It can be verified by direct 
substitution that integration of the second-order differential 
equation leads to26 

k’ exp(-kTz(t)) + c exp(-kZ(t)) 
k’ 

A ( t )  = -2- + - 
k k - k T  

(2.30) 

where 
C = A(O) + 2k’/k - k’/(k - kT) (2.31) 

(26) Murphy, G. M. In Ordinary Differential Equations and Their So- 
lutions; Van Nostrand: Princeton, NJ, 1960; pp 159-161. 
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Figure 4. Simulation results for recombination plus bimolecular trapping 
on a 100 X 100 square lattice initially containing lo00 particles and 
various numbers of randomly distributed traps T. Note the rapid ap- 
proach to a steady state with increasing trap density. ATol is given by 
A ( t )  + AT(t). The staying probability p s  = 0. 

At infinite time ( t  = a ) ,  the number of free particles is zero, i.e., 
A(m) = 0, and it follows that when k # kT (i.e., b # 1) 

-2 + [1/(1 - b ) ] Y  + [A(O)k/k’+ 2 - 1 / ( 1  - b)]Y‘Ib = 0 
(2.32) 

where 

Y = eXp(-kTI(m)) (2.33) 

is the root of the transcendental eq 2.32. Note that Y is a function 
of A(O)k/k’and b. When t - m, eq 2.29 implies that 

AT(m)/k’= ( l /kT)( l  - u) (2.34) 

and Y must therefore lie between 0 and 1, since AT(m) and k’are 
positive. It follows from eq 2.34 that MFTpredicts that k’/kT 
is an upper bound for AT( m) in unimolecular trappinglreactions. 
Equations 2.32 and 2.34 can be used to determine Y and AT(m)/k’, 
respectively, provided k and kT are known and b = kT/k # 0 or 
1. 

In the limit when k = 0 ( b  = m), Le., when there is no free 
particle annihilation 
A ( t )  = A ( 0 )  - 2k’I(t) - (k’/k,)[exp(-k,l(t)) - I ]  (2.35) 

in which the integral I ( t )  appears. As t - m ,  A ( t )  - 0 and it 
follows that 

A(0)  = 2k’I(m) + (k’/kT)[exp(-kTZ(m)) - 11 (2.36) 

Le., Y = exp(-kTl(m)) is the root of 
[kTA(O)/k’+ I ]  + 2 In Y -  Y =  O (2.37) 

We use eq 2.37 and 2.34 to determine Y and AT(m)/k’when k 
= 0 assuming kT is known. 

The mean field kinetic equations, which are independent of the 
dimensionality, say nothing about the magnitudes of the rate 
constants; for this a more detailed description of the kinetic en- 
counters is required when it is found that the free particle rate 
constant is determined by the dimensionality and symmetry of 
the lattice as well as the coordination number of the sites. We 
have already referred to the calculation of k for free particle 
annihilation using a combinatorial argument which leads to k = 
3 / 4  when the staying probability ps  is zero; the details of this 
argument are given in the Appendix. The argument is unchanged 
in the presence of traps in bimolecular reactions leading to the 
same value of k. Moreover, the rate constant kT for annihilation 
between a free particle and one that is trapped in a bimolecular 
recombination is easily calculated. Since there are four sites 
around a trap and the probability of moving a free particle in each 
of the four directions is when the staying probability is zero, 
it follows that kT = 1 assuming a uniform distribution of traps 
and particles and a zero staying probability. At long times we 
expect again that kT = 1 on the assumption that the trapped 
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Figure 5. The same situation as in Figure 4, except that trapping is 
unimolecular with a rate constant k‘. 

100 1 
Tlo)=0.001 
Alo)=O.l 

80 

60 
AI01 

A’Tot(ll 
~ 

20 

~ 

“0 5 I .  1 . 5  2 .  
t/1000 

Figure 6. Simulation results for recombination plus bimolecular trapping 
for various “staying probabilities” ps. A, is given by A + AT. 

particles are uniformly distributed over the traps; thus b = 4/3 

for short times and possibly also for long times. 

111. Simulation of Bimolecular and Unimolecular 
Trapping/Annihilation Reactions: Comparison with Mean 
Field Theory 

The simulations of bimolecular trapping/annihilation reactions 
were carried out in much the same way as the simulations of free 
annihilation on a 2-d lattice except that we started with random 
distributions of free traps of density T(0) and free particles of 
density A(0). The concentration of free particles A(t)  and trapped 
particles AT(t) were recorded as a function of time t during a run, 
and ensemble averages were calculated over 100 or so initial 
configurations of traps and particles for a set of initial conditions 
defined by the trap density T(0) and the free particle density A(0). 
The trap density T(0) ranged from O.OOO5 to 0.5 while the initial 
free particle density A(0) lay between 0.1 and 0.5. Figure 4 shows 
that a steady-state concentration of Albt(t) is approached rapidly 
with increasing trap density. The simulations for unimolecular 
trapping reactions were carried out analogously. In this case, there 
are no traps initially but free particles were immobilized with a 
probability k’in each time step. The results were recorded and 
averaged in the same way as the runs for bimolecular trap- 
ping/annihilations, with k’ replacing T(0) as the distinguishing 
trapping parameter, k’ ranged between 0.0005 and 0.5, and the 
initial free particle densities A(0)  were between 0.1 and 0.5. 
Steady-state concentrations of trapped particles were reached more 
rapidly with increasing probabilities k’of particle immobilization; 
see Figure 5 .  The effects of different staying probabilities on 
the total densities of free and trapped particles as a function of 
time are illustrated in Figures 6 and 7. The simulation of free 
particle annihilation is compared in Figure 8 with those of uni- 
and bimolecular trapping/annihilations when the trapping rate 
k’is equal to the initial trap density T(0) .  The initial particle 
density A(0)  is the same in all three simulations, and the staying 
probability is zero. It appears that the unimolecular trapping 
scheme reaches a steady state, as measured by ATot(t), much 
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Figure 7. Simulation results for recombination plus unimolecular trap- 
ping for various values of ps.  
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Figure 8. Simulation results comparing uni- to bimolecular trapping 
(plus recombination), where the initial trap density “(0) is equal to the 
trapping rate k’. ‘Free” refers to recombination without trapping. The 
staying probability pa = 0. 

TABLE I: Ratio AT(m)/T(O)  as a Function of the Ratio of the 
Initial Number of Free Particles to Traps A (O)/T(O) = a in a 
Recombination Reaction with Bimolecular Trapping When the Staying 
Probability p ,  = 0; Comparison of Computer Simulation with the 
Predictions of MFT 

eq 2.19’ 
A(O)/T(O) b = m b = 4/ ,  b = 1.0 b = 0.5 simulation 

0.1 0.091 0.088 0.086 0.083 
0.1429 0.124 0.119 0.117 0.111 
0.2 0.165 0.155 0.152 0.143 0.154 
0.4 0.275 0.251 0.245 0.222 0.252 
0.5 0.316 0.286 0.278 0.250 0.288 
0.6 0.349 0.314 0.305 0.273 0.316 
1 .o 0.432 0.388 0.375 0.333 0.394 
I .25 0.459 0.414 0.401 0.357 0.414 
1.667 0.482 0.442 0.429 0.389 0.442 
2.5 0.496 0.470 0.459 0.417 0.466 
5.0 0.5 0.492 0.486 0.454 0.490 
7.0 0.5 0.496 0.492 0.466 0.487 

10.0 0.5 0.498 0.496 0.476 0.508 

‘In eq 2.19, b = k T / k  and K = a / b  where a = A(O)/T(O).  For a 
random distribution of traps and free A’s, a combinatorial analysis 
shows that k = 3 / 4  and kT = 1.0 when the staying probability pr = 0. 

sooner than the bimolecular recombination with trapping. 
However, this is misleading since ATot(t) is the total density of 
particles, both free and trapped, and a plateau in Figure 8 implies 
that it is the sum of these two densities rather than the number 
of trapped particles that has quickly reached a constant for 
unimolecular trapping. In the rest of this paper we will take care 
to distinguish between these two densities and find that the 
concentration of trapped particles AT(t) fluctuates over a longer 
time before reaching a limit for unimolecular than for bimolecular 

TABLE II: Ratio AT( m ) / k ’  as a Function of A (O)/k’ for 
Recombination Reactions with Unimolecular Trapping When the 
Staying Probability p s  = 0; Comparison of Computer Simulation with 
Predictions of M F P  

A r ( @ ) / k ’  
eq 2.34“ 

A(O)/k’  b = m b = 4 / q  b = 0.5 simulation 
0.1 0.096 
0.2 0.186 
0.4 0.350 
0.5 0.424 
0.6 0.494 
1 .o 0.744 
1.25 1.88 
1.67 1.07 
2.5 1.38 
5.0 1.94 
7 .O 2.19 

10.0 2.4 1 
20.0 2.62 

100.0 2.66 
200.0 2.66 
250.0 2.66 
300.0 2.66 

0.088 
0.159 
0.261 
0.309 
0.346 
0.461 
0.513 
0.580 
0.671 
0.802 
0.852 
0.894 
0.949 
0.992 
0.997 
0.998 
0.998 

0.093 
0.175 
0.312 
0.371 
0.424 
0.600 
0.688 
0.809 
0.989 
1.30 
1.45 
1.60 
1.85 
2.26 
2.38 
2.41 
2.43 

0.17 
0.31 
0.371 
0.423 
0.589 
0.635 
0.696 
0.807 
0.975 
1.34 
1.46 
1.75 
2.35 
2.58 
2.67 
2.68 

’ For b # a, Y is obtained as the solution to eq 2.32 assuming k = 
3 / 4  and kT = 1 ( b  = 4 /3 )  or kT = 0.375 ( b  = 0.5). For b = m ( k  = 0), 
Y is the solution of eq 2.37 assuming kT = 0.375. 
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Figure 9. Simulation results (0) for the normalized infinite time “yield” 
A T ( m ) / T ( 0 )  are compared with mean field theory (MFT) for recombi- 
nation plus bimolecular trapping. b is given by k T / k ,  where kT is the 
trapping rate and k is the bimolecular annihilation rate. b = 4/3 corre- 
sponds to “perfect mixing” or “ideal” MFT. 

trapping reactions. The trapped particle densities at infinite time 
AT(m) determined by computer simulation are summarized in the 
last columns of Tables I and I1 for both types of recombination 
reactions with trapping. 

The simulation data as a function of time, over the course of 
many runs for several initial sets of conditions, were found at first 
to be too numerous and too complicated to analyze since neither 
the rate equations nor the rate constants were known. Although 
it was tempting to compare the data with the mean field kinetic 
equations, this still left open the choice of rate constants k and 
kT for uni- and bimolecular trapping reactions. Examination of 
the simulations for the bimolecular trapping/annihilations showed 
that AT(m)/T(O) was a function only of the initial ratio (A- 
(O)/T(O)) of free particles to traps (see last column of Table I ) .  
Mean field theory (MFT), eq 2.19, predicts that this is determined 
by the ratio b = kT/k of the rate constants kT and k for trapped 
particle and free particle annihilations, respectively, thereby 
providing a simple test of the theory for assumed values of 6; see 
Table I and Figure 9. Likewise, an analysis of the results for 
unimolecular trapping was carried out by recording AT( m)/k’ as 
a function of AT(0)/k’(last column of Table 11). Results of the 
simulations of A,(m)/k’are summarized in Table I1 along with 
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Figure 10. Simulation results (@) for the normalized infinite time “yield” 
AT(m)/k’are compared with mean field theory (MFT) for recombination 
plus unimolecular trapping. b is the same as in Figure 9. Note that b 
= 4 / 3  gives a poor estimate of the yield for large values of AT(O)/k’. 
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Figure 11 .  Plots of the rate constants k and kT for free and trapped 
particle annihilations, respectively, as a function of k‘ for unimolecular 
recombination plus trapping; see eq 3.1 and 3.2. The same plots convey 
the dependence of k and kT on the staying probability p s  of free particles 
in bimolecular recombination plus trapping reactions. k’ = is the 
dividing line between b > 1.0 and b < 1.0, where b = kT/k. 

MFT calculations assuming b = 0.5, 4/3,  and a. Figure 10 
compares the MFT calculations of &(m)/k’as a function AT- 
(O)/k’with the computer results. An infinite b corresponds to 
the assumption of an extremely large rate constant kT for trapped 
particle annihilation or a near-zero rate constant k for free particle 
annihilation. The simulations are compared with the predictions 
of eq 2.34 and 2.32 for finite values of b or eq 2.34 and 2.37 for 
b = m which are the predictions of mean field theory. 

We are now in a position to make a detailed comparison of our 
simulations with the predictions of mean field theory. The as- 
sumption that k = 3 / 4  and kT = 1 .O (Le., b = 4 / 3 )  leads to mean 
field kinetic equations that are in excellent agreement with the 
computer simulations of the number of trapped particles at infinite 
time in bimolecular trapping/annihilation reactions (see Table 
I and Figure 9) but less so for unimolecular trapping reactions. 
The disagreement in the second case could be due to the wrong 
choice of the rate constants k and kT rather than the incorrectness 
of MFT. Moreover, assuming mean field behavior, kT can be 
estimated for unimolecular trapping/annihilation reactions by 
noting that in eq 2.34 Y -+ 0 as A(O)/k’becomes large: the rate 
constant kT must therefore be equal to the asymptotic value of 
k’/AT(m) as A(O)/k’increases. From Figure 10 we find that kT 
is approximately 0.375 rather than unity for large A(O)/k’(i.e., 
small k’at finite A(O))!  Retaining k = 3 / 4  as the rate constant 
for free annihilation we surmise that b = 0.5 in this regime. 
However, this argument ignores the coupling between the rate 

TABLE 111: Ratio A ~ ( m ) / k ’ a s  a Function of A (O)/k’for 
Recombination Reactions with Unimolecular Trapping When the 
Staying Probability ps = 0; Comparison of Computer Simulation with 
Predictions of MFT and Combinatorial Analysis of Rate Constants 

A 4 m ) l k ’  
A ( 0 ) l k ‘  k‘ b calcd‘ simulation . I ,  

0.1 0.5 0.727 0.092 
0.2 0.5 0.727 0.172 0.17 
0.4 0.5 0.727 0.304 0.31 
0.5 0.5 0.727 0.360 0.371 
0.6 0.5 0.727 0.410 0.423 
1 .o 0.5 0.727 0.574 0.589 
1.25 0.4 0.8 0.612 0.635 
1.67 0.3 0.888 0.665 0.696 
2.5 0.2 1.000 0.739b 0.807 
5.0 0.1 1.142 0.850 0.975 
7.0 0.0143 1.302 0.860 1.34 

10.0 0.01 1.31 1 0.900 1.46 
20.0 0.005 1.322 0.953 1.75 

100.0 0.001 1.333 0.992 2.35 
200.0 0.0005 1.333 0.996 2.58 
250.0 0.0004 1.333 0.998 2.67 
300.0 0.00033 1.333 0.998 2.68 

DCalculated from eq 2.34 in which Y is obtained as the solution to eq 
2.32 assuming kT = 1 - k‘, k = 3/4 + k’/2 - (5/4)k’*, and b = kT/k 
= 4 / (3  + 5k9. bFrom the numerical solution of the differrential 
equations (2.27) and (2.28). 

constants k and kT through the spontaneous generation of trapped 
particles with probability k’, so that the annihilations of free and 
trapped particles become correlated. An analysis of this, under 
certain assumptions, will be considered next. 

The correlation between the densities of free and trapped A’s 
in unimolecular reactions is easily calculated if they are assumed 
to be randomly distributed, since k now takes on the role of a finite 
staying probability p s  which not only immobilizes a free A but 
transforms it simultaneously into a trapped particle AT. From 
the combinatorial arguments presented in the Appendix it follows, 
mutatis mutandis, that 

k = 3/4  + k‘/2 - (5/4)kn 

kT = I - k’ 

(3.1) 

and 

(3.2) 

Figure 11 shows plots of k and kT as functions of k‘. Note that 
the rate constants k and kT are zero for k’equal to unity, while 
the curves of k and kT intersect at the maximum value of k which 
occurs at k ’ =  Eliminating k’between eq 3.1 and 3.2, we 
arrive at a quadratic equation for kT 

(3.3) 5kT2 - 8 k ~  + 4k = 0 

kT = [4 - 4(1 - 5k/4)’i2]/5 

b = kT/k - O S  

b = 4/(3 + 5k’) 

which has only one physically acceptable solution 

(3.4) 

For small k 

(3.5) 

(3.6) 

which implies that b - 0.5 only if k’is close to unity. All of our 
assumed values of k’are however less than or equal to 0.5; see 
Table 111. 

Before continuing this discussion of unimolecular trapping and 
recombination, we note that if we substitute ps  for k’in the above 
equations we will be considering the dependence of k and kT on 
the staying probability p s  for bimolecular/trapping plus recom- 
bination reactions. Figure 11  and the discussion presented above 
may also be viewed in this light. That is to say, bimolecular 
trapping and recombination with a finite staying probability is 
related to the corresponding unimolecular reaction with zero 

More generally, we find from eq 3.3 and 3.2 that 
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Figure 12. Simulation results of normalized trapped particle densities 
for both bimolecular ( A T ( t ) / T ( 0 ) )  and unimolecular (AT(t)/k? trapping 
(plus recombination) are plotted vs time. Note that, for identical values 
of the initial trap density and trapping rate, the stationary state is at- 
tained more slowly for unimolecular than for bimolecular trapping. 

staying probability, provided the free and trapped A’s are uni- 
formly distributed. 

Returning to unimolecular trapping/annihilations it appears, 
from Figure 10 and Table 11, that mean field theory with b = 0.5 
and the coupling between k and kT ignored provides an accurate 
prediction of the simulations of A T ( m ) / k ’  for small values of 
A(O)/k’(between 0.1 and 0.6) but is less satisfactory at the high 
end of A(O)/k’.  In this limit, a value of b = gives answers that 
are closer to the simulated values of A T ( m ) / k ’ ;  the crossover in 
behavior seems to occur around A(O) /k ’  equal to unity. Nev- 
ertheless, the assumption of b = 0.5 gives the best overall fit to 
the simulation data (see Table 11). However, we regard this as 
accidental, since it ignores the coupling between the free and 
trapped particle annihilations and provides no explanation of the 
empirically determined rate constant kT = 0.375 for the anni- 
hilation of trapped A’s when A(O)/k’  is large (Le., when k’ is 
relatively small). When the coupling between the two rate con- 
stants k and kT is taken into account, b is found to vary with k’, 
as shown in eq 3.6, and we arrive at  the results summarized in 
Table 111. Here the predictions of MFT are calculated assuming 
that k and kT are given by eq 3.1 and 3.2, respectively. Note that 
AT(m)/k’is now a function not only of AT(O)/k’but also of k’ 
as well. The agreement between the simulations and theory is 
excellent a t  the low end of A(O)/k’but not when k’is small and 
A(O)/k’is large. At this end kT is expected to be 0.375 rather 
than 1 - k ’  - 1 according to the theory. The reason for this 
discrepancy may lie in  the assumptions underlying our combi- 
natorial calculations, which take into account the correlation 
between free and trapped A’s but ignore the correlation between 
trapped A’s. The trapped A’s could shield one another from 
annihilation by free particles, but the combinatorial calculation 
ignores the effect of this on the annihilation rates. These diffi- 
culties imply that the correlations which may develop among the 
different species in unimolecular trapping/recombination reactions 
are much more complex than what might be deduced from a 
random mixing of free and trapped particles. Instead of a random 
distribution of trapped A’s, one might have, for instance, a more 
or less random distribution of clusters of trapped particles which 
scale the rate constants so that the kinetic mean field equations 
are still obeyed for trapped A’s at infinite time. The calculation 
of the rate constants, within the framework of the MFT, as a 
function of the initial conditions now becomes a much more 
difficult task. Another possibility is that MFT breaks down at 
large times for small values of rate constant k’, when the anni- 
hilation of a few trapped A’s by fewer free particles could become 
diffusion controlled, with the rate constant kT for trapped particle 
annihilation determined by the relevant diffusion coefficient. 

So far our analysis has dealt with the end product of the re- 
actions, Le., the numbers of trapped particles a t  infinite time and 
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Figure 13. The same as in Figure 12, but with larger trapping rate and 
initial trap density. 
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Figure 14. Simulation results (0)  on both free A and trapped A (AT) 
populations are plotted vs time and compared with ideal mixing MFT 
( b  = 4/3)  for bimolecular trapping. 
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Figure 15. Simulation results (0 )  on both free A and trapped A popu- 
lations are plotted vs time for unimolecular trapping. 

their dependence primarily on the initial conditions. We will now 
discuss the changes in free and trapped particle densities during 
the course of these reactions. In Figures 12 and 13 the simulations 
of bimolecular and unimolecular trapping/annihilation reactions 
are compared with each other over 1000 or more time steps for 
the same values of T(0)  and k‘. When T(0) = k‘ = 0.005 the 
limiting value of A T ( t ) / T ( 0 )  for a bimolecular reaction is reached 
much sooner than the corresponding limit of AT( t ) /k ’  for a 
unimolecular trapping reaction. Although the fluctuations are 
larger for the smaller values of T(0)  and k’equal to 0.001 (Figure 
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Figure 16. The same as in Figure 14, except that now the simulation 
results are indicated by (+), the initial trap density is much smaller, and 
the ratio A(O)/T(O) is much larger. Note that population crossing has 
not occurred, even after 80 time steps. Also note the divergence of 
A(r ) /T(O)  from the computed MFT curve 
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Figure 17. The same as in Figure 15, except that now the simulation 
results are indicated by (+), the trapping rate is much smaller, and the 
ratio A ( O ) / k ' i s  much larger. Note that in contrast to Figure 15 popu- 
lation crossing has occurred after 65 time steps. 

13), it is quite remarkable how soon the mean of AT(t)/T(O) in 
a bimolecular trapping reaction lies close to its limiting value. In 
Figures 14-1 7 the free and trapped particle concentrations are 
depicted as a function of time for both types of trapping/anni- 
hilation reactions. The simulation results for bimolecular trap- 
ping/annihilation reactions are compared with mean field theory 
(full lines) in Figures 14 and 16 for different initial free particle 
and trap densities. With two exceptions the overall agreement 
is excellent. The first of these discrepancies appears at very short 
times, up to about eight time steps, and can be attributed to the 
treatment of time as a continuous variable in our mean field theory. 
The second disagreement (see Figure 16), which is real, occurs 
between the calculated and simulated free particle concentrations 
A(t) at low trap densities (T(0)  = 0.01). The simulations of A(t) 
clearly show deviations from mean field behavior although the 
density of trapped particles AT(t) conforms accurately to this 
theory at all times! 

I n  the Introduction it was noted that for the catalytic anni- 
hilation reaction 

A + B - B + C  (3.7) 
in which the A's can freely diffuse and the B's are in a static 
random configuration, the long time asymptotic behavior of A 
is given by the Donsker-Varadhan 

(3.8) 
where d is the spatial dimension. As demonstrated in Figures 18 
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Figure 18. Simulation results for recombination plus bimolecular trap- 
ping, indicating that the stretched exponential decay A(r )  - exp(-P) 
with cy - seems to describe the kinetics adequately. 
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Figure 19. The same as in Figure 18, except that recombination plus 
unimolecular trapping has been simulated. 

and 19, this stretched exponential decay gives a good account of 
both bimolecular and unimolecular trapping/annihilation ( d  = 
2), even though neither reaction mechanism conforms exactly to 
eq 3.7. The physical explanation behind eq 3.8 is that a t  long 
times the A particles which have avoided annihilation by traps 
(B) are those which have wandered into large trap-free regions, 
regions which occur with an exponentially small probability. It 
is the balance between these two opposing factors-the long 
lifetime in a void vs the small probability of locating such a 
void-which produces the stretched exponential. 

IV. Discussion 
What is perhaps the most surprising result of our study is that 

the MFT perfect mixing analysis agrees precisely with the com- 
puter simulations of bimolecular trapping, a t  least as far as the 
trapped A population AT(t) is concerned. Furthermore, this exact 
conformity holds over a very large range of initial conditions (A(O), 
T(0)) .  The explanation for this ideal behavior is as follows. At 
high trap densities, the reaction is essentially complete before 
spatial correlations have had a chance to develop, while at low 
trap densities the initially important spatial corielations are be- 
tween free A's and density fluctuations tend to be "self-rectifying"; 
Le., a local enhancement in A(t) results in an increase in the free 
A recombination rate, while the converse is true for a local di- 
minution in A. The key point is that at longer times the traps 
are flooded with an excess of A's with the consequence that exactly 
half of the initial T population has been converted into AT (save 
for relatively small statistical fluctuations); this is because a free 
A has an equal probability of reacting with a T or an AT. So far 
as A, is concerned, the latter stage of the reaction consists entirely 

-9.0 I 
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probability that a site is occupied. Pick any site S, which may 
be free or occupied. We ask what is the probability that the same 
site will be occupied, at the next time step after any annihilations 
have taken place? Assuming complete random mixing, this 
probability is also the normalized density A(t+l) at the next time 
step after allowing for possible annihilation by pairs. The rate 
constant for free particle annihilation is then calculated from the 
difference between the densities A(t+l) and A(t )  at  successive 
time steps. We discuss this for free particle annihilations with 
zero staying probability before considering annihilations with a 
finite staying probability. The arguments can be readily, but 
tediously, extended to annihilation reactions with trapping; as 
expected intuitively, the presence of trapped A’s does not alter 
the bimolecular rate constant for free annihilation which, however, 
does depend on the staying probability; see eq A.7. 

Annihilation with Zero Staying Probability. The probability 
that the site S is occupied a t  time t is A( t ) .  When the staying 
probability ps is zero, it is irrelevant whether the site S is actually 
free or not; if it is occupied the particle will move to one of four 
neighboring sites with probability in the next time step and 
make no contribution to the probability that the site S is occupied. 
At time t ,  the number of neighboring sites that are occupied can 
range from zero to four. If all of the neighboring sites are empty 
at time t ,  the central site S obviously cannot be occupied at  time 
t + 1. There are four ways of realizing the occupation of only 
one neighboring site which occurs with probability A(?).  The 
probability that a site (neighboring or not) is unoccupied is (1 
- A ( t ) ) .  Hence, the contribution of a solitary neighbor to the 
probability that the central site S will be occupied at  time t + 
1 is 4(1/4)A(t)(l - = A(t)(l - A(t) )3.  Two occupied 
neighboring sites will lead to single occupancy of the central site 
a t  the next time step only if one of these particles moves in; the 
probability that this occurs is easily calculated to be 2[4!/(2!. 
2!)](1/4)(3/4)~I(t)~( 1 - A(t))2 = (9/4)A(t)2(1 - A(t))2. When 
three or four neighboring sites are occupied, pairwise annihilation 
ensures that only one or three of these particles moving into the 
central site will lead to single occupancy after annihilation at  the 
next time step; the probabilities of this occurring are found to be 
(7/4)A(t)3( 1 - A(?)) and ( 15/32)A(t)4, respectively. Adding all 
of these contributions we find 

A(t+l) = A(t)(l - A(?))’ + (9/4)A(t)*(l - A(f))’ + 
(7/4)A(t)’(l - A ( t ) )  + (15/32)A(t)4 (A.l) 

Subtracting A(t) and going over to the limit of a continuous time 
variable, we have 

[ d A ( t ) / d t ] ~ ~  = -(3/4)A(t)2 (1/4)A(t)3 - ( 1 / 3 2 ) ~ I ( t ) ~  
( A 4  

where the subscript N T  stands for no trapping. This is eq 2.4a 
of our paper which implies that the rate constant k for free particle 
annihilation to O(A(t)2), assuming random mixing, is 3/4. It is 
simple to extend this to the case of bimolecular annihilation with 
traps, where it is found that 
dA(t)/dt = [ d A ( ? ) / d f ] ~ ~  - 

T(O)[A(t) - (3/4)A(t)2 + (1/4)A(t)’ - (1/32)A(t)4] (A.3) 

where [dA(t)/dtINT is given by eq A.2. From the coefficients of 
the second-order terms we see that the binary rate constant k for 
free particle annihilation remains equal to 3/4 even in the presence 
of trapped particles, while the rate constant kT for annihilation 
of trapped particles with free particles is unity. 

Annihilation with Traps When the Staying Probability Is Not 
Zero. Here it is necessary to consider whether the site S is 
occupied or not. For free particle annihilation instead of (A.l) 
we have 
A ( t + l )  = (c ,  + c,’)A(t)( l  - A(t))4 + 

(c2 + c;)A(r)2( 1 - ~ ( t ) ) ~  + (c3 + c ; ) A ( ~ ) ~ (  1 - A(t))2 + 
(c4 + ~ 4 ‘ ) A ( t ) ~ ( l  - A ( t ) )  + c ~ A ( ~ ) ~  (A.4) 

where ci and ci’ are the coefficients of the contributions from i 
sites, including the central site S, at time t to the probability that 

of the random reshuffling of equal numbers of AT and T particles, 
there being no correlation between a trapping event and an A-AT 
annihilation event. Not surprisingly this argument breaks down 
for recombination with unimolecular trapping, for in this case there 
are no vacant traps and the AT population is evolving in such a 
manner as to be highly correlated with the local free A density. 
However, the interplay of the various spatial correlations is rather 
complex and deserves some comment. For high trapping rates 
the situation is identical with the bimolecular case with a large 
initial trap density, and MFT should again hold. For lower 
trapping rates and large A(O), we are in the self-rectifying regime 
a t  short times and A ( t )  will be more or less uniform. However, 
as AT’S begin to form there will evolve a correlation between AT 
and A: an AT enveloped in a region deficient in A will last longer 
than one surrounded by an excess of A. This effect is partially 
compensated by the fact that the odds of an AT appearing in some 
region are raised by enhancing the number of A’s in that region. 
This implies that even at  long times the free A bimolecular re- 
combination competes with A-A, annihilation, and one anticipates 
a more gradual approach to the stationary state than is observed 
in bimolecular trapping. This feature, which appears in our 
simulations, might prove most useful to an observer attempting 
to distinguish between the two trapping mechanisms by simply 
monitoring A ( t )  or AT(t). 

As mentioned earlier, allowing for reversible trapping should 
have the same effect as our incorporation of a finite “staying” or 
“sticking” probability; Le., a particle now has a finite chance of 
remaining fixed during the passage of a unit of time. Note, 
however, that this “stick” algorithm corresponds to unimolecular 
trapping only; for reversible bimolecular trapping we expect the 
kinetics to be similar, though not identical. In both instances one 
anticipates A ( t )  - t-’ for sufficiently long times. 

A most curious and puzzling observation is the rapid, rather 
than very gradual, appearance of stretched exponential (exp(t*), 
a = decay in A( t )  for both uni- and bimolecular trap- 
ping/annihilation. The Donsker-Varadhan mechanism requires 
the presence of large regions completely devoid of traps, and such 
regions are extremely rare in a random trap configuration. In 
the unimolecular case, however, traps are continually being formed 
by diffusing A’s which have developed spatial correlations and 
so one anticipates correlated traps. Furthermore, the diffusing 
particles can excavate their own trap-free regions through the 
A-AT annihilation mechanism. In the bimolecular case the traps 
are immortal, and so one might expect no acceleration of stretched 
exponential behavior in A(t) .  Note, however, that those free A’s 
which remain at long times are those particles which have tended 
to avoid one another so as not to annihilate, and this is in addition 
to having avoided an encounter with a T or AT. One might expect 
this correlated A population to be more efficient at locating large 
trapfree voids than an equivalent number of uncorrelated particles. 

At any rate, the most important findings of this study are as 
follows. Irreversible trapping has a profound effect on diffu- 
sion-limited bimolecular recombination processes, the details of 
the trapping mechanism are indeed discernible through the 
“observable” (single particle density) kinetics, and while certain 
features of the reaction can be computed very accurately from 
a simple mean field theory, other aspects are dominated by large, 
anomalous fluctuations. 
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Appendix: Rate Constants for Annihilation Reactions with 
and without Traps 

Consider a square lattice with a random distribution of A’s at 
time t so that no more than one particle can occupy each site. Let 
the normalized density of free particles be A(t )  which is also the 
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the site S is occupied by a free particle a t  time t + 1; the prime 
distinguishes the moves in which the central site S is unoccupied, 
at time t, from the moves in which it is filled. It is found that 

CI’ = (1 --PSI 

c2’ = (3/4)(3 - 2Ps - P,z) 

c2 = (1 + Ps + 2Ps2) 

c 3 ’ =  (1/4)(7-3ps-3ps2-ps3)  

c3 = (3/4)(3 + 3p,2 + 2p,3) 

c4 = ( I  /4)(7 - ps  + 3p,z + 5p,3 + 2p,4) 

c1 = Ps 

cq/ = ( 1  /32)( 15 - 4ps - 6ps2 - p: - 4ps3) 

~ 5 ’  = (1 /256)1ps[(3 + pSl4 + 6(3 + pJ2( 1 - P S ) ~  + ( I  - 
pJ41 + 4(1 - PS)’[(~ - PSl2(3 + P,) + (3 + P,)~])  

c5 = 0 (‘4.5) 
Subtracting A(t) from eq A.4 and going over to the limit of 
continuous time, it is found that 

[ d A ( t ) / d t ] ~ ~  = (-4 + CI~)A(~)~  + (6 - 3cy2 + c ~ 3 ) A ( t ) ~  + 
(-4 + 3cU2 - 2 ~ ~ 3  + .4)A(t)4 + (1 - +  CY^ - c ~ q  + ~ts)A(t)’ 

(A.6) 

where cyi  = ci + ci’and, in particular, the rate constant for free 
particle annihilation 

k = (4 - ( ~ 2 )  = 3/4  + ps/2 - (5/4)p,Z (A.7) 

Extending this argument to bimolecular annihilation with traps, 
we find that 

dA(t)/dt = [dA(t)/dt],, - T(O)[c,’A(t) + (-3Cl’ + 
C;)A(t)’ + (3Cl’ - 2C2/ + C;)A(t)3 + (-CI’ + Ci - C3’ + 

~ m ( t 1 4 1  w . 8 )  

where [dA(t)/dtINT is now given by (A.6). It follows that the 
rate constant for free particle annihilation remains unchanged in 
the presence of traps while the rate constant for the annihilation 
of trapped particles is given by 

kT = CI’ = 1 - ps (‘4.9) 

It is readily verified that when ps = 0, eq A.8 reduces to eq A.3. 
Another check on these calculations is provided by the limiting 
condition of ps  = I ,  when all of the coefficients of the various 
powers of A(t) in (A.6) and (A.8) must be zero. This also implies 
that in this limit k and kT are zero. 

Since A(t) 5 1, the long time behavior of [d(l/A(t))/dt] = 
-(l/A(t))2, [dA(t)/dt] is governed by the leading term, (4 - cyz), 
which has a maximum at ps  = This is the staying probability 
at which a crossover in the curves l/A(t) vs t is predicted to occur 
for free particle annihilation in the absence of traps. 
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The photoisomerization kinetics of 4,4’-dihydroxystilbene in polar solvents, n-alkyl alcohols and n-alkanenitriles, was investigated 
as a function of temperature at ambient pressure. Although it is possible to define an activation barrier within a restricted 
set of solvents, the activation energy depends on both the magnitude and the dynamics of solvation. Comparison of these 
results with earlier work on trans-stilbene and 4,4’-dimethoxystilbene demonstrates their generality and probes effects of 
hydrogen bonding with the hydroxyl group. A comprehensive view of the reaction dynamics where the solvent polarization 
field is intimately coupled to the “intramolecular” reaction coordinate is discussed. 

Introduction 
Polar solvents can have a dramatic influence on chemical re- 

action rates and chemical reaction mechanisms. Recent studies 
of electron-transfer reactions, both intermolecular and intramo- 
lecular, demonstrate the importance of both the magnitude of 
solvation and the time dependence of solvation on reaction rates.*-5 
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The relative time scales of solvation and reaction determine the 
friction experienced for the electron transfer. The dynamics of 
solvation also plays an important role in reactions involving motion 
of nuclei, in particular isomerization  reaction^.^-^ The present 
work extends these earlier studies, on stilbene and 4,4’-dimeth- 
oxystilbene, to the investigation of the photoisomerization of 
4,4’-dihydroxystilbene in both n-alkyl alcohols and n-alkanenitriles. 
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