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The polarization fluctuation and energy gap formulations of the reaction coordinate for outer sphere
electron transfer are linearly related to the constant energy constraint Lagrangian multiplier m in
Marcus’ theory of electron transfer. The quadratic dependence of the free energies of the reactant
and product intermediates on m and m+1, respectively, leads to similar dependence of the free
energies on the reaction coordinates and to the same dependence of the activation energy on the
reorganization energy and the standard reaction free energy. Within the approximations of a
continuum model of the solvent and linear response of the longitudinal polarization to the electric
field in Marcus’ theory, both formulations of the reaction coordinate are expected to lead to the same
results. © 2008 American Institute of Physics. �DOI: 10.1063/1.3026365�

I. INTRODUCTION

The Marcus–Hush theory of outer-sphere electron trans-
fer �ET� reactions in solution predicts parabolic free energies
for reactant and product pairs as functions of an appropriate
reaction coordinate.1,2 The free energies are potentials of
mean force, which have been repeatedly verified in computer
simulations of ET reactions3,4 when the reaction coordinate
is defined as the difference in the interaction energies of the
donor-acceptor pair with the surrounding solvent. Other defi-
nitions of the reaction coordinate have also been used.5–7

Sumi and Marcus8 discussed the dynamics of ET reac-
tions in terms of a reaction-diffusion equation that includes
contributions from intramolecular vibrations and solvent po-
larization to the free energy profiles. In extending their work
to reversible reactions,10–12 we defined the reaction coordi-
nate x�t� for the outer-sphere contribution to ET by10

x�t�2 =
4�

c
� �Por�t,r� − P1

or,eq�r��2dr , �1�

where c=1 /��−1 /� in which �� and � are the high fre-
quency optical and static dielectric constants, respectively,
P1

or�t ,r� is the orientation polarization of the solvent at posi-
tion r at time t which takes the equilibrium values of P1

or,eq�r�
and P2

or,eq�r�, respectively, for the reactant and product pairs
before and after ET. Although Sumi and Marcus did not ex-
plicitly define the reaction coordinate in this way, the
adopted reaction coordinate is consistent with the Marcus
forms for the outer-sphere free energy curves of the initial
and final states, which are similar to the potential energies of
two shifted harmonic oscillators,

V1�x� = x2/2, �2�

V2�x� = �x − x0�2/2 + �G0. �3�

Here x0
2 /2=�0 is the solvent reorganization energy defined

below and �G0 is the standard reaction free energy for ET
between the reactant and product intermediates X* and X. In
Eqs. �2� and �3� the vibrational contributions to the reactant
and product free energies are omitted for convenience as
being irrelevant to the present discussion.

The definition of the reaction coordinate given in Eq. �1�
was used by us9–11 and others12,13 but it is was not clear how
Eqs. �1�–�3� are logically related to each other and how they
follow from the Marcus theory of ET. It is the purpose of this
article to establish this relationship in detail while pointing
out the approximations involved and also the connection to
an alternate definition of the reaction coordinate.

II. DERIVATION OF THE FREE ENERGY CURVES AND
POLARIZATION FLUCTUATION REACTION
COORDINATE FROM THE MARCUS THEORY OF
OUTER ELECTRON TRANSFER

A key ingredient in the Marcus theory of ET is that the
solvent polarization fluctuates from its equilibrium value
during the course of ET, which following the Franck–
Condon principle, takes place at constant energy. ET be-
tween an A-B pair proceeds through the intermediates X* and
X, at a fixed distance R, which have the same energy and
same nonequilibrium solvent configuration,

A + B → X* → X → C + D . �4�

There are many possible intermediates and configurations
that satisfy these conditions, which led Marcus to determine
the optimal free energies F* and F of X* and X, respectively,
by a variational argument in which the constant energy con-
straint is incorporated by introducing a Lagrangian multiplier
m. Starting from a free energy functional �Eq. �15� of Ref.
1�b��, Marcus showed that1�b�,11

F*�m� =
1

8��
� E

c
*2

dr + m2�0, �5�
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F�m� =
1

8��
� Ec

2dr + �m + 1�2�0, �6�

where E
c
* and Ec are the corresponding electric fields due to

the intermediates X* and X in the absence of the solvent �i.e.,
in a vacuum�, E

c
*2

and Ec
2 are the squares of the absolute

values, and

�0 = �c/8�� � ��E
c
* − Ec��2dr �7�

is the solvent reorganization energy. We note that F* and F
depend quadratically on m and m+1, respectively. When m
=0, F* �m=0� is the equilibrium free energy of the reactant
intermediate X* at the bottom of its well, and when m=−1, F
�m=−1� is the corresponding equilibrium free energy of the
product intermediate X. The standard free energy for ET
from X*→X is

�G0 � F�m = − 1� − F*�m = 0�

=
1

8��
� �Ec

2 − E
c
*2�dr �8�

which is independent of m. Setting m=−1 in Eq. �5� shows
that �0 is the free energy of reorganization of the solvent
from its equilibrium configuration at the bottom of the reac-
tant well to the corresponding equilibrium configuration at
the bottom of the product well while remaining on the reac-
tant free energy surface �before ET�. A corresponding argu-
ment pertaining to the product well applies on setting m=0
in Eq. �6�. This highlights the significance and importance of
parameter m and suggests that m, or a variable proportional
to it, can be considered as a reaction coordinate for an outer-
sphere ET reaction. We proceed to show how this can be
accomplished by relating m to the solvent polarization fluc-
tuation.

Marcus treated the solvent polarization P�r� as the sum
of contributions from electronic �E-type� polarization Pe�r�,
which responds instantaneously to ET, and atomic and orien-
tation �U-type� polarization Pu�r� which lags behind; the
time scales for these polarizations, 10−15 versus
10−13–10−11 s are vastly different. Marcus also showed, as-
suming linear response of the U-type polarization to the
field, that1�b�

Pu�m,r� = ��u

�
	�E

c
*�r� + m
E

c
*�r� − Ec�r��� , �9�

where the polarizabilities �u= ��−��� /4�, �u /�=c�� / �4��,
and c=1 /��−1 /� as defined earlier. Although Marcus’ free
energy functional is nonlinear in the nonequilibrium U-type
polarization, his variational treatment optimizes this func-
tional for ET at constant energy and leads to a linear rela-
tionship between this polarization and the Lagrangian multi-
plier m. The nonequilibrium polarization can also be related
to fictitious charges on the reactants during electron transfer,
but that is not of concern here.1,6 In the limits m=0 and
m=−1, Pu�m ,r� attains the equilibrium polarizations of the
reactant and product pairs, respectively, which we also char-
acterize by subscripts 1 and 2. Defining Pu,1

eq �r�� Pu�m

=0,r�, Pu,2
eq �r�� Pu�m=−1,r�, it follows from Eq. �9� and the

definition of �u /� that

m�E
c
*�r� − Ec�r�� = �4�/c����Pu�m,r� − Pu,1

eq �r�� , �10�

�m + 1��E
c
*�r� − Ec�r�� = �4�/c����Pu�m,r� − Pu,2

eq �r�� .

�11�

Setting m=−1 in Eq. �10�, taking the dot product of the result
with itself, and integrating over the solvent coordinates, one
finds that the solvent reorganization energy is given by

�0 =
2�

c��
2 � �Pu,2

eq �r� − Pu,1
eq �r��2dr . �12�

Likewise by taking the dot product of each side in Eq. �10�
with itself, integrating, and using Eq. �12�, we see that

m2�0 =
2�

c��
2 � �Pu�m,r� − Pu,1

eq �r��2dr . �13�

Here the integrand is the absolute square of the deviation of
the U-type solvent polarization from its equilibrium value
around the reactant pair X*. By a similar argument, starting
from Eq. �11� we find

�m + 1�2�0 =
2�

c��
2 � �Pu�m,r� − Pu,2

eq �r��2dr , �14�

where the integrand is now the absolute square of the devia-
tion of the same solvent polarization from its equilibrium
value around the product pair X.

A major advantage of our nonlinear formulation of m
over linear formulations6�b�,18 that involve the polarization
fluctuation, the bare fields E

c
*�r� and Ec�r� and the reorgani-

zation energy �0 is that the bare fields have been eliminated
in the nonlinear form and m can be calculated from �0 and
the polarization fluctuations alone. For example, the bare
fields due to a complex molecule may be unknown because
the charges themselves may be unknown, and it is an advan-
tage to eliminate these fields and cast the reaction coordinate
solely in terms of the polarization fluctuations and the reor-
ganization energy. Moreover our nonlinear form gives two
solutions for m in nonequilibrium states. The two symmetri-
cal placed solutions of Eq. �13� for m �except when m=0,
when the solutions coincide� for a given integrated polariza-
tion fluctuation correspond to two states with the same free
energy for the reactant pair X* as expected from the para-
bolic form of the free energy dependence on the parameter m
in Eq. �5�. Likewise, Eq. �14� leads to two values of m sym-
metrically placed around m=−1, corresponding to two states
with the same free energy of the product pair X as is evident
from Eq. �6�.

Inserting Eqs. �13� and �14� in Eqs. �5� and �6�, respec-
tively, we have

F*�m� = F*�m = 0� +
2�

c��
2 � �Pu�r� − Pu,1

eq �r��2dr �15�

and
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F�m� = F�m = − 1� +
2�

c��
2 � �Pu�r� − Pu,2

eq �r��2dr , �16�

which are seen to follow directly from Marcus’ theory of
electron transfer. Equations �15� and �16� or their equivalent
have been given earlier by Lee and Hynes6�b� who obtained
them by a different route.

Our discussion suggests that the Lagrangian multiplier m
introduced by Marcus as a constant energy constraint in the
free energy functional for electron transfer is a natural reac-
tion coordinate. We have related it to fluctuations in the sol-
vent polarization. As shown below it defines two other reac-
tion coordinates �the polarization fluctuation and energy gap
formulations� that are linearly related m.

We define the polarization reaction coordinate
x=−�2�0�1/2 m, where the square of m is explicitly related to
the solvent polarization by Eq. �13� when it follows that

x2 =
4�

c��
2 � �Pu�m,r� − Pu,1

eq �r��2dr . �17�

Assuming ���1, Eq. �17� leads to Eq. �1�, if we identify the
U-type solvent polarization Pu�m ,r� with the solvent orien-
tation polarization Por�r� when Pu,1

eq �r��P1
or,eq�r�. Equation

�15� can also be written as

F*�x� = F*�x = 0� + x2/2, �18�

which is a quadratic function of the reaction coordinate x
identified as the negative of the Lagrangian multiplier m
multiplied by the square root of twice the reorganization en-
ergy. The corresponding equation for the free energy of the
product intermediate is obtained by shifting the origin of the
reaction coordinate from reactant to product, which is
equivalent to considering the deviation of the solvent polar-
ization from its equilibrium value around the product pair X.
Defining x0= �2�0�1/2, i.e., taking the positive square root of
the definition of x0

2 given earlier in Sec. I, we see that �x
−x0�2 /2=�0�m+1�2, which provides the analog of Eq. �17�
on substitution in Eq. �14�. It follows from Eq. �6� that the
free energy of the product pair X is

F�x� = F�x = x0� + �x − x0�2/2. �19�

Equation �13� provides two values of m with the same reac-
tant free energy centered about m=0, and Eq. �14� gives the
two values for m centered around m=−1 for the product
well. The nonlinear form thus gives both values of x and
x−x0 associated with the parabolic free energy wells.

Subtracting F*�x=0� from Eqs. �18� and �19� shifts the
free energy curves vertically, and we arrive at Eqs. �2� and
�3� if we define

V1�x� � F*�x� − F*�x = 0� ,

V2�x� � F�x� − F*�x = 0�, and

�G0 � F�x = x0� − F*�x = 0� .

Note that the Lagrangian multiplier ensures that the energies
of the reactant and products intermediates are equal at a
given m, although the energies themselves may change with
m.

The intersection of the reactant and product free energies
defines the transition state, when the reaction coordinate

x# = �x0
2 + 2�G0�/�2x0� = ��0 + �G0�/�2�0�1/2, �20�

and m#�−x# / �2�0�1/2=−��0+�G0� /2�0. The “activation en-
ergy” for the ET reaction

EA � F*�x#� − F*�x = 0�

= V1�x#� = x#2/2 = ��0 + �G0�2/�4�0� �21�

is well known and is derived here using our definition of the
reaction coordinate. For an isotopic exchange reaction,
�G0=0, x#= ��0 /2�1/2, m#=−1 /2, and EA=�0 /4 which again
is well known.1 The reorganization energy is necessarily
positive and the activation energy is zero for electron transfer
reactions with negative �G0 when �0=−�G0. At this point
the reaction rate reaches a maximum before decreasing as
�G0 becomes more negative. This is the Marcus inversion
region.1,14,15

Except for the assumptions that the solvent is a dielectric
continuum with linear response of the longitudinal polariza-
tion to an electric field, the reaction coordinate x is model
independent. In particular, it does not assume that ET occurs
between spherical ions of given radii �a1 and a2� and charges
�e

1
* ,e

2
*� before and �e1 ,e2� after electron transfer although it

can be applied to such systems. In this case one finds on
evaluating the integral in Eq. �7� that

�0 = c��e�2 1

2a1
+

1

2a2
−

1

R
� , �22�

as first shown by Marcus.1 Here �e=e2−e
2
*=e

1
*−e1. The

standard free energy �Eq. �8�� is also easily calculated to be

�G0 �
e1e2 − e1

*e2
*

�R
+

1

�
� e1

2 − e1
*2

2a1
+

e2
2 − e2

*2

2a2
	 . �23�

The second term in Eq. �23� is Wiso−W
iso
* ; the difference

between the energies of the product and reactant ions at an
infinite distance apart �R=��.

Marcus also defined another standard free energy

�F0�m� = �F*�m� − Wiso
* � − T�Se + �Wiso − F�m�� , �24�

where −T�Se is the free energy of electron transfer from X*

to X which occurs at constant energy. Each term in Eq. �23�
corresponds to a step in the mechanism of ET presented in
Eq. �4�. �F0 is clearly a function of m which is here the same
for both the reactant and product free energy surfaces in this
expression. The relationship to �G0 follows from Eqs. �5�
and �6� for the difference F*�m�−F�m�, when

�F0�m� = − �G0 + �Wiso − Wiso
* � − T�Se − �2m + 1��0.

�25�

The −T�Se term is quite small and negligible. Using Eq. �23�
in Eq. �25�, one finds1
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�F0�m� =
e1

*e2
* − e1e2

�R
− �2m + 1��0. �26�

For an isotopic exchange reaction the numerator of the first
term is zero, m=−1 /2 at the transition state and �F0�m#�
=0.

To study the dynamics of electron transfer reactions, the
definition of the reaction coordinate is extended to include
the time variable by considering the U-type polarization
states to be a function of time so that the parameter m is itself
a function of time. Identifying the U-type polarization in
Eqs. �10� and �11� with the orientation polarization leads to

Por�t,r� = �P1
or,eq�r� + m�t��P1

or,eq�r�� − 
P2
or,eq�r��� , �27�

where P1
or,eq�r�= ��u /��E

c
*. Defining x�t�=−�2�0�1/2m�t� we

have from Eq. �13�,

x�t�2 =
2�

c��
2 � �Por�t,r� − P1

eq,or�r��2dr . �28�

This is analogous to Eq. �17� but has the time variable ex-
plicitly represented in the equation. It has been discussed
elsewhere how the time correlation function of this reaction
coordinate is related to the time correlation function for sol-
vent dynamics.6,10�a� This applies also to the time correlation
function of m�t� since x�t� and m�t� are linearly related.

III. ENERGY-GAP REACTION COORDINATE FOR
ELECTRON TRANSFER

Another form of the reaction coordinate for ET reactions
seen frequently in the literature5,6�b�,7,12�b�,16,17 is the
interaction-energy gap

y �� drP�r� · �E
c
*�r� − Ec�r��

= ye +� drPu�m,r� · �E
c
*�r� − Ec�r�� , �29�

which is related to the instantaneous change in solvation en-
ergy on electron transfer from reactant to product. Here P�r�
is the total polarization, ye the contribution to y from the
electronic polarization, and the remainder is the energy gap
first introduced by Zusman.5 The second term is twice the
difference between the interaction energies of the polarized
solvent with the product �X� and reactant �X*� ion pairs and
can be calculated directly in a computer simulations.3,4 There
have been many theoretical discussions that lead to Eq. �29�.
Lee and Hynes’ discussion, Tachiya’s discussion, and that of
Zhu and Stell start from a nonequilibrium free energy func-
tional slightly different from the Marcus functional.18 We
continue our discussion of Eq. �29� by retaining the Marcus’
energy constraint, which leads to Eq. �9�.

The difference E
c
*�r�−Ec�r� is not a solvent property, but

its relation to the solvent orientation polarization is given by
Eq. �9�. It follows from, Eqs. �9� and �29�, that

y = y0
* + m��2�0 = y0

* − x���2�0�1/2, �30�

where y
0
*=ye+ �c�� /4���drE

c
*�r� · �E

c
*�r�−Ec�r��. The reac-

tion coordinates y and x are linearly related and y=y
0
*, when

m=x=0. Defining Y ��y−y
0
*� /��=m2�0, we see that m

=Y /2�0 and �1+m�= �Y +2�0� /2�0. Inserting this in Eqs. �5�
and �6� we obtain

F*�Y� = F*�m = 0� +
Y2

4�0
, �31�

F�Y� = F�m = − 1� +
�Y + 2�0�2

4�0
. �32�

Subtracting F*�n=0� from both sides and defining V1 and V2

as before we have

V1�Y� = Y2/4�0, �33�

V2�Y� = �Y + 2�0�2/4�0 + �G0, �34�

where �G0�F�m=−1�−F*�m=0�. Equations �33� and �34�
are equivalent to the expressions for the free energies of
reactant and product intermediates given elsewhere.5,7,12�b�

We see they are also equivalent to Eqs. �2� and �3� derived
here using the reaction coordinate x to which Y is linearly
related. The reaction coordinates x and Y fluctuate with time
since the solvent orientation polarization Por�r , t� is time de-
pendent. This can be used to relate the solvation dynamics
with the time correlation function of the reaction coordinates.

CONCLUSION

We have shown how the polarization fluctuation and the
energy gap formulations of the reaction coordinate follow
naturally from Marcus’s theory of outer electron transfer
without any further modification or extension. They both
lead to a quadratic dependence of the free energies of the
reactant and product intermediates on the respective reaction
coordinates. Both reaction coordinates are linearly related to
the Lagrangian multiplier m in Marcus’ theory of outer
sphere electron transfer, so that m also plays the role of a
natural reaction coordinate.
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