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We extend an earlier analytic study of a sticky electrolyte model (SEM) to the case L = ¢/3, where
L is the distance at which positive and negative ions bind to each other, using the hypernetted
chain (HNC) approximation within the spherical core and the mean spherical approximation
{MSA) outside. We also present numerical solutions to the HNC approximation alone for 6/3
<L<o/2. The average number of bonded pairs is found to be essentially the same for the two
approximations but the ion-ion correlation functions are very different except at high
concentrations when the shielding is large. Small amounts of tetramers are also observed in the
HNC correlation functions for 0/3 < L<0/2, and trimers are found when L = 0/2. An
expression for the excess free energy of the SEM electrolyte is derived by turning on the stickiness
between oppositely charged ions. The excess energy of the system of dipolar dumbbells with
charges at a distance L = ¢/3 is obtained in the MSA and the atom-atom correlation functions
are compared with the HNC approximation and with recent Monte Carlo simulations. The
asymptotic form of the direct correlation functions defined through the Ornstein—Zernike

equation is given for dipolar dumbbells.

I. INTRODUCTION

In this study we extend an earlier analysis’ of a sticky
electrolyte model (SEM) to the case where the oppositely
charged ions of diameter o can bind at a distance L = /3.
The equilibrium properties for this model, which are dis-
cussed in detail in this paper, are found to be strikingly dif-
ferent from those previously determined for L == ¢/2, when
the model parameters and approximations for the correla-
tion functions are left unchanged. In addition, we extend our
discussions of pairing at L = 0/2 and ¢/3 to include the
equilibrium properties in the limit of complete association
when the system consists of dipolar dumbbells. Our earlier
study of the SEM used the hypernetted chain (HNC) approx-
imation within the spherical core and the mean spherical
approximation (MSA} outside. This HNC/MSA combina-
tion allows a major part of the solution to be obtained ana-
Iytically, but its accuracy is uncertain. We have therefore
undertaken a numerical study of the same model in the HNC
approximation alone using methods similar to those em-
ployed in earlier studies of the restricted primitive model.”
The equilibrium constant for dimerization is found to be
essentially unchanged, but the ion~ion correlation functions
are significantly altered at low concentrations and show evi-
dence of association beyond the formation of dimers when
L <o/2. This behavior is unexpected since it is implicitly
excluded by the Hamiltonian for the SEM when L < 0/2, but
our HNC computations indicate that an approximate solu-
tion may not necessarily obey this restriction. However, a
less accurate theory like the HNC/MSA combination shows
no evidence of association beyond dimerization when L < o/
2 for the systems reported in this paper. One advantage of the
HNC/MS approximation is that its solution can be deter-
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mined analytically. This also leads to an expression in closed
form for the energy of dipolar dumbbells in the MSA which
is given here for L = /3. The form of the energy for L = o/
n is discussed in an Appendix. The correlation functions in
the MS and HNC approximations are compared with each
other and with recent Monte Carlo simulations.>*

The association of ions to form extended dipoles modi-
fies the asymptotic form of the direct correlation function
defined through the Ornstein-Zernike (OZ) relation. We
show in another Appendix to this paper that, in the absence
of a solvent, the asymptotic form of the direct correlation
function is given by

¢;j()= —pPBdee;/r (1.1)

with 4 = e/(e¢ — 1) where ¢ is the dielectric constant of dipo-
lar dumbbells. We find that the effect of this modification on
the atom-atom correlation function in the MSA is to slightly
improve agreement with computer simulations of the same
system. However, in our studies of electrolytes in high di-
electric solvents, 4 is taken to be unity and the asymptotic
form of the direct correlation function is assumed to be

;) = — Pe,e;/(€r), {1.2)
in which ¢, is the dielectric constant of the solvent.

It is convenient to summarize some features of the mod-
el before discussing the details of the solutions for L = ¢/3
and L = /2. The equilibrium statistical mechanics of ions
whose potential energy functions are drawn in Fig. 1 mimic
ion association. The model, however, is difficult to solve ana-
lytically even in the MSA. A modification of the potential in
which the well centered at r = L is made infinitely deep
(€;—> o0 ) and infinitesimally narrow (w—0) such that the sec-
ond virial coefficient is unchanged is easier to treat. This
innovation was introduced by Cummings and Stell® in their
study of chemical association following Baxter’s work on
adhesive hard species® and Héye and Olaussen’s treatment
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FIG. 1. The pair potential for the sticky electrolyte model (SEM) studied in
this paper. The model parameters used are w = 0.10, €,/k = 4000 K, and
L = 0/2 and 0/3 for a 2-2 electrolyte (¢ = 2 esu) in a solvent of dielectric
constant €, = 78.358.

of chemical association.” The Mayer f function for oppo-
sitely charged ions in the modified potential is defined by

* ()= —14L5r—L)/12r, (1.3a)
= — 14 exple’/ek Tr), r>o, (1.3b)

where e is the magnitude of the charge in the ion, €, is the
dielectric constant of the continuum background solvent, k
is Boltzmann constant, T is the absolute temperature, and 7
is related to the parameters of the model depicted in Fig. 1 by
the requirement that the second virial coefficient is un-
changed:

O<r<o

3
T=—mexp( —fz/kT) (14)
The f functions for like ions are the same for both models
but the presence of a delta function in £, _(r) induces a cor-
responding delta function term in the indirect correlation
function for unlike ions:

h, (A= —1+AL8r—L)/12 (0<r<o). (1.5)
The association parameter 4 in Eq. (1.5) is related to the
average number of ions (N ) bound to a given ion by

(N) =An(L /o), (1.6)

where 77 = mpo”/6 and p is the total ion density. If L <0/2,
the Hamiltonian for this model implicitly excludes associ-
ation beyond dimerization and the reduced association con-
stant is given by’

A (L /o)
K==/ 1.7
31— (N)P 7
The parameters A and 7 are related by
Ar=y,_(L) (18)

where y,_(n=I[14+h__(r)] explu, _(r)/kT] is deter-
mined by the approximation used for the ion—ion correlation
functions inside the hard cores. The interpretation of A as an
association parameter remains sensible only if it is never neg-
ative. The use of the HNC approximation within the hard
core ensures this. We also expect, 0<{N )<1 when L <o0/2
in the SEM. When A =0, (N) = 0 and the electrolyte is
completely dissociated while A = ~(0/L )* corresponds to
complete association when (N) = 1.

The thermodynamic properties are conveniently deter-
mined through the energy equation. A simple extension of
derivation of the excess energy E “* given in Ref. 1 to take
account of the temperature dependence of the dielectric con-
stant of the solvent background leads to the relation

PE*

= _AMXB& (| dmesdin T)x% (1.9)

N 2
where B = 1/kT, « is the inverse Debye length defined by
47
2= & 1.10
kT Z Pi (1.10)
and
H'—'—'Kf shp(s) ds. (1.11)

In Eq. (1.11), hp(r)=[h, _(r) — k. .(r)]/2. The first
term in Eq. (1.9) is the binding energy for pair formation,
while the second term (also a function of A ) is determined by
the remaining ion—ion interactions, which can be deter-
mined analytically in the MSA. When A is zero, the binding
energy is zero and the energy and other equilibrium proper-
ties of the SEM reduce to those of the restricted primitive
model (RPM). The temperature coefficient of the dielectric
constant of the solvent background appears as a constant
factor in the second term of Eq. (1.9). It is assumed to be zero
in all of our computations since we have not specified the
solvent except when we are dealing with a vacuum back-
ground when the temperature coefficient is zero. However,
for water, at room temperature (25°C), dlney/
dIn T= — 1.3679 which changes the sign of the second
term in Eq. (1.9).2 Other routes to the thermodynamic prop-
erties such as the virial and compressibility equations are
discussed in connection with the HNC computations.

We conclude this introduction by deriving an expres-
sion for the Helmholtz free energy of the SEM electrolyte by
turning on the stickiness between oppositely charged ions in
an RPM electrolyte. The Mayer f functions are written as

L€ ) =f5n+(1=8,)EL8(r— L)/12, (1.12)
where f(r) is the f function for an RPM electrolyte £ = 1/
7 and we use the notation i, j = 1,2 to represent + , — ions,

respectively. The functional derivative of the Helmholtz free
energy per unit volume with respect to f;;(r;£ ) is given by

J. Chem. Phys., Vol. 83, No. 11, 1 December 1985

Downloaded 05 Jun 2004 to 130.111.64.68. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



5872 J. C. Rasaiah and S. H. Lee: lon association and dipolar dumbbells

SBA/VVEf(rE)= —4pip; yiyr:§). (1.13)
We consider the variation 6 f;,(r;§ ) due to a change in £;

8£,(r&)=(1—8,)L8(r — L)5¢ /12. (1.14)

Using Eq. (1.14) in Eq. (1.13), integrating over r and £, and
summing over / and j we find

B[4 (SEM) — 4 (RPM)]/N

= — (L /o J:y+_(L;§ ) dE’, (1.15)

where we have used the fact that p, =p_ =p/2 and
1 = mpa/6. The function y, _(L;£) is determined by the
parameters of the SEM and by the concentration and tem-
perature, As p—0, y_, _(L;£ }—1, and Eq. (1.15) can be inte-
grated trivially to obtain the contribution of the change in
the second virial coefficient to the free energy when the stick-
iness is turned on. This can be confirmed by direct calcula-
tion.! The application of Eq. (1.15) to uncharged sticky mole-
cules is equivalent to integration over the inverse
temperature.’ It follows from Egs. (1.8) and (1.4) that the
integral in Eq. (1.15) can also be written as

In § 2
J A(g')d1n§'=ﬁf Aley)d e, (1.16)

The lower limit of integration in the last integral corresponds
to the well in Fig. 1 filling up to the infinite height character-
istic of the RPM. The first integral in Eq. {1.16) is determined
by the way in which the association parameter A4 (§ ) changes
with the sticking coefficient & which is the origin of the ion
association discussed in this paper. It should be emphasized
however that although the narrow square well potential (Fig.
1) provides an attractive way to estimate the sticking coeffi-
cient £ it is not an essential part of the theory and may be
discarded or replaced by other criteria for determining the
sticking coefficient. Differentiating Eq. (1.15) with respect to
the concentration we obtain the osmotic coefficient ¢, and
the mean activity coefficient y , , for the SEM:

¢;(SEM) — $(RPM) = —} n(L /o)’

'3
x f [Py (L") +pdy o _(LEVIPIdE (117)
iny, ,(SEM)—Iny, (RPM)= — i 5(L //o}’
x f [ 3y, (LiEVp + 29 _(LENdE".  (L18)

The subscript s characterizes the stickiness which is turned
on to obtain the excess thermodynamics of the SEM.

This paper is organized as follows: Section II contains
the HNC/MSA solution for electrolytes and the MSA solu-
tion for dipolar dumbbells when L = ¢0/3. The HNC ap-
proximation for these systems with 0/3<L<o/2 is discussed
in Sec. III. The results for the two approximations are com-
pared and analyzed in Sec. IV. The Appendices discuss the
asymptotic form of the direct correlation function for dipo-
lar dumbbells and the general form of the energy in the MS
approximation for L = o/n.

Il. HNC/MSA SOLUTION FOR A SYMMETRICAL
ELECTROLYTE AND THE MSA SOLUTION FOR
DIPOLAR DUMBBELLS WITH L = 0/3

As discussed in Ref. 1, a simple strategy for dealing with
a symmetrical electrolyte that associates is to consider the
sum (S') and difference (D ) correlation functions

hi(r)=Th, (N +h, (]2,

e(nN=1lec,_(r+c,4(nN172, (2.1)
hp(r)=[h,_(r) =,y (N]/2,
eplr) = [es (N — e, 4 (N]/2. (2.2)

This enables the Ornstein-Zernike (OZ) equations for the
mixture of ions to be decoupled into two equations, one for
the sum and the other for the difference correlation func-
tions:

hiri=c0)+p [ clsh(Ir —sl) ds, 23)

holr) = colr) = [ colshhollr — s ds, 2.4
where

)= — 1+ ALSr—L)/24, r<a, (2.5)

hp(r)=ALS(r—L)/24, r<o (2.6)
are exact relations. In the MSA for electrolytes

(=0, r>a, (2.7)

cplr) = Ae*/(eykT), r>o, (2.8)

where ¢, is the dielectric constant of the solvent and we as-
sume, for the present, that 4 is unity. The correct form of 4
in the limit of complete association is discussed in Appendix
A

The sum OZ equation and closure are identical to the
corresponding equations for the dimerization of uncharged
sticky hard spheres, which has been solved for L = o/2 and
L = 0/3 by Cummings and Stell.> We are thus left with find-
ing the solutions to the difference equations for L = ¢/3.
Factorization of the difference OZ equation yields'

rholr) = 4317 + 2mp f dt [M + g(6)]lr — tollr — 1)

(2.9)
()= a30)+ 2mp| Ma0 — [ ar e~ ).
(2.9)
where
B =golr) — M, (2.108)
M= —«/2mp, (2.10b)

and g9 () is the derivative with respect to » of g% (r). Alsop is
the total density of ions, and c%(r) is the short range part of
the direct correlation function.! The function ¢3,(7) is related
to the direct correlation function ¢, (r) by

[1+peplk)] =dpk)gp(—k), (2.11)
where ¢,(k) and 1 — g,(k) are the Fourier transforms of

¢p(r) and 2mpg,(r), respectively. Thus the solution to the
problem hinges on determining g% (7} for all 7. It follows from
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Eqgs. (2.6) and (2.9a) that g% (r), in the domain 0 <7 < o, is the = —M/2+ 2 Fcos[\2p(r — 0/3)]

solution to V2 Esin[{2 /3)] /3 20/3(2.13b
g3 (") —pgp(r+o/3) =pM — H, 0<r<o/3, (2.12a) CREenEAr o, of <<
=(pM/2—H)r+D+H/p+20H/3

a5 (" —plgo(r+0/3) —dplr—o/3)] = — H,
— vM /3 — E cos[2 p(r — 20/3)]
o/3<r<20/3, (2.12b)
— Fsin[\2p(r—20/3)], 20/3<r<o, (2.13¢)

where the constants D, E, and F are determined by the
where H is defined in Eq. (1.11), and po = v = 4 /18. We  boundary conditions

4y +pgd(r—o/3)= —H, 20/3<r<o, (2.12)

also know from Eqs. (2.8) and (2.9b) that ¢3,(r) = O for r> 0. ¢5(0*/3)=4q%(0~/3) + p/2mp, (2.14a)
g5(r)=(pM /2 — H)r+ D + E cosly2 pr) Slo+)=0. (2.14¢)
+ Fsin(\2pr), O<r<o/3 (2.13a)  We thus obtain

|

proD_H/BI[N2Ar—2)+ (9 —4vis+3V2c] +M'/6[ —3V2(1 +v) + (3 + dvis + 3VZ c] + vis — V2)/(129)
o? 32—4s5—\2¢ ’
| (2.15a)
g E_H/W2 -3+ 2vs+32c] + M/6[(3 — W2+ (2v — s — 32 c] +vs — V2 c/129 (2.15b)
o* 32 —4s—2¢ ’ .
o H/[ —3+32s+2v+3)c] +M'/6[3 325+ (3 — 2vje] + V(1 —c —25)/129
_F_ , (2.15¢)
P 32 —45s—\2¢

where s = sin(y2v/3), ¢ = cos(y2v/3), H' = H /o, and M’ = M /o>. Note that g(r) has three distinct domains in the region
0 <r<owhen L = g/3 in contrast to two regions when L = ¢/2.! For L = o/n there are n such domains and 7 constants to be
determined which makes it difficult to obtain a solution for arbitrary n. However, the general form of the energy is discussed in
Appendix B.

The parameter H is determined from the electroneutrality condition

f J(t)dt = 1/(4 mp), (2.16)
0
where J {r) is defined by

Jr)= f shp(s) ds. 2.17)
It follows from Eq. (1.11) that

H =«J (o), (2.18)
and Eq. (2.6) implies that

Jn=J0), O<r<o=/3 (2.19a)

=J(o)=J(0)—p/2ap, o*/3<r<o. (2.19b)

Integration of Eq. (2.9a) provides an expression for J (r):

J(r)= —qp(r) +2mp f: dtgptV(lr—1t|), (2.20a)

which on evaluation at » = 0™ leads to a quadratic equation for H:

12a,9H " + (a, + 12a;0M \H' + (a,v + 6asnM )M’ =0,
(2.20b)

where
2= (3\/5—4s+\/§c)v2+6(—\/§+2s+ﬁc)v+9ﬁ(l—c)’
9 (W2 —ds —2¢)
_2A=\2+sv—622—2—\2¢)
B 3(3y2 — 4s — 2 ¢) ’
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p (=324 — 20 +3(5\2 — 8 — 2y + 18(~ 2 +5+12¢)

W32 —4s —2¢)
oo W=+ 325~ 2 q)
! BB —ds—2¢)

e = (32 —ds+ 2P+ 12( — 2\2 + 3spv + 18(3{2 — 45 — 2 ¢)

18(3J2 —4s — 2 ¢)

whose solution (determined by the requirement that H—0 as p'/2M—0) is
He= 2/3[(02 —sv+ 322 — 25 —2¢)] +xo/W[(—3V2+4s — 2 + 352 — 8 — 2 clv + 18(— 2 +5 ++2 )]

87/3v*[(3V2 — 4s + V2V + 6 — V2 + 25 + 2 cjv + H2(1 — ¢)]
{4902 —s)v + 3(2V2 — 25 = 20)] 2 + 4wo/3v[ (12 — 1725 + 3V2es — de + 125%)v + 3( — 8 + /25 — 5y2c5 + 8¢ — 2] } /2

81/3v* [ (32 — 4s +2ep” + 6( — 2 + 25+ 2chv + 9V2(1 — ¢]]

Equation (2.21) is the principal result of this section for the
thermodynamic properties of sticky electrolytes with
L = 0/3. When A—0 we recover the MSA solution for H in
the RPM:

(1 +x)— (1 + 2x)'/2
2mpd?

while A = 27/7 corresponds to complete dimerization and

yields

H(RPM) = , (2.22)

(1 + ex) — (&} + ex)'/?

H (dipoles) = dc,mpo*/3
4

, (2.23)

where

¢ = 52 — 55in(1/42) — 242 cos(1/42),

¢, = [ — 2 — 45sin(1/42) + 52 cos{1/42)]/6,
¢; = 4[ 12 cos(1/4/2) — 3y2 sin(1/42)

—3.5{2 sin(y2) — 4 cos(y2)] /3,
¢ = [342 + 4 sin(1/42) + 42 cos(1/42)] /3, (2.24)

and x = xo may be also interpreted as a reduced dipole mo-
ment defined by the relation

x = 6(mp/€kT ) %, (2.25)

in which i = eg/3 is the dipole moment. In the absence of a
solvent we use the asymptotic form for the direct correlation
function given by Eq. (1.1) with the dielectric constant of the
background equal to unity. Instead of Eq. (2.8) ¢, (r) in the
MSA is now defined by

cplr) = A/ (kT), (2.26)

which leaves the analysis of this section unchanged except
that x has to be redefined and Eq. (2.25) modified to read

x = 6(4mp/kT ). (2.27)
The excess energy (excluding the binding energy) of the
system of extended dipoles is given, in the MSA, by
B ex . ‘
= — «H (dipole
N, (dipole)
= —x[e; +ex — (] +¢3%)' /%] /(8eqm), (2.28)
where N is the number of dipoles. This is of the same form

(2.21)

'z;s the equation for the excess energy of dipoles in MSA for
L = 0/2, except that the constants ¢;, ¢,, ¢5, and ¢, are differ-
ent.! It is also remarkably similar to the expression for the
reduced excess energy BE /N of the RPM electrolyte
(A =0)inthe MSA, when¢, = ¢, = 1,¢; =2,andc, = 3/2.8
We find that this general form obtains for all L = o/n, where
n is an integer (see Appendix B). Integration of the excess
energy with respect to 8, from 0 to some finite 5, at constant
p; leads to the excess Helmholtz free energy.! A difficulty
with the MSA for dipoles is that the excess thermodynamic
functions do not vanish in the limit of zero density. In this
respect it is similar to the analog of the zero-pole approxima-
tion'® for the direct correlation function of dipolar dumb-
bells defined through the site—site Ornstein-Zernike equa-
tion.'®® When A4 = 0, however, the system reverts to the
RPM and all of the excess thermodynamic functions in the
MSA vanish at zero density.

When there are free ions in the system (0 <A <27/7),
the association parameter A is determined from Eq. (1.8) and
the HNC approximation, when

At = exp[h,(0/3) — ¢,(0/3) + hp(0/3) — cp(0/3)],
(2.29)

where h,(0/3) — c,(0/3) is derived in Ref. 5 and we find,
from our analysis, that

hpl0/3) — cplo/3) = 6VE' — 36\2yM 'F’ + 3615,
(2.30)

in which
S= —V20vM'72 — H')[F'(1/3 + s/\J2 — 2¢/3)
+E'(2s/3 — (1 — ¢)/¥2v)]
— 2D —vM'/6 + H'/3)[E's + F'(1 —¢)]
—vM"/12 4+ M'H'/6
+(H'/v—M")[E'(1 —¢)— F's]
—2WE"? 4+ F¥/3. (2.31)

The exponential function in Eq. (2.29) ensures that A is al-
ways positive in the HNC approximation. The equilibrium
constant is calculated from Eq. (1.7).

J. Chem. Phys., Vol. 83, No. 11, 1 December 1985

Downloaded 05 Jun 2004 to 130.111.64.68. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. C. Rasaiah and S. H. Lee: lon association and dipolar dumbbells 5875

H1l. SOLUTION OF THE SEM IN THE HNC
APPROXIMATION

The solution to the HNC approximation is of necessity
obtained numerically by a simple modification of the nu-
merical methods used in studies of electrolytes in the primi-
tive model.? The correlation function for oppositely charged
ions h _(r) is separated into two terms, one of which con-
tains the delta function inside the hard core, and the other
the remainder. Thus,

hy _(n=h"y _(N+Ah,_(n), (3.1)

where
Ah, _(r)=AL8(r—L)/12, r<o, (3.2a)
=0, r>o, {3.2b)

and &’ _ (r) is the remainder. The HNC approximation®'!
assumes that

Inhy(r) = —Buli(r) + q,;() + 7,;(r), (3.3)
in which
q;; = —e; ¢ exp( — «r)/(€.k Tr). {3.4)

uf;(r} is the short range part of the potential and 7, ,(r) is
determined from the matrix equation

T=X%h + qeX + g2 X *h, (3.5)
where
X=h—qg-—r7 (3.6a)

and the convolution

(4*B);; = z pifAikBkjd{k}'

i=1

(3.6b)

Equation (3.5), which corresponds to the Ornstein—Zernike
equation, is solved in Fourier space starting with a trial func-
tion which takes r as zero or equal to the same function
obtained previously at a neighboring concentration. The
Fourier transforms are determined by adding the transform
of the delta function term, determined analytically, to the
rest calculated numerically. Thus the transform of 4, _(r)is

h,_k)y=h", _(k)+wAL?sin(kL)/(3k), (3.7)
in which the first term % ‘' . (k) is computed using a fast
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FIG. 2. The parameter A as a function of the electrolyte concentration ¢,, for

a 2-2 electrolyte using the SEM in HNC/MSA with L = 0/2 and ¢/3
(T=298K, €,= 78.358, 0 = 4.2 &, e,/k = 4000 K, w = 0.10).
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trolyte as a function of the electrolyte concentration c,, in the SEM with
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Fourier transform (FFT) algorithm in each step of the itera-
tive procedure and the second term is the transform of Eq.
(3.2a). The inverse transforms of 7, which determine the cor-
relation functions outside the spherical core, are obtained
numerically using the FFT routine. When the solutions have
converged, the association parameter A is determined from
Eq.(1.8) wherey, _{L ), is given, in the HNC approximation
by

Yi_(L)= exp{Pe,e_[1—exp(—«L)]/&L)+7,_(L)}.
(3.8)
Starting with the virial equation in the form*?

-1 7 d{l+f,
BP“:TZ;p,ij; r[—dr-dr)—}y,-j(r)%rzdr,
(3.9)

where f;;(r) is the Mayer f function, we find that for the
electrolyte model,

BP _ 2mpa® [1+ h,(0)] _kH
P 3 7
) Ly, @iy, L),

2
(3.10)

10 e e 6

- HNC/MSA—SEM B
L= ol2

<N>

MSA—RPM -

HNC/MSA—SEM
L= of3

0.0 0.5 1.0 . ) 2.0
Cat

FIG. 4. The average number (N ) of oppositely charged ions at 6/2 and 0/3
from the center of a given ion of a 2-2 electrolyte in the SEM. The distribu-
tion functions at contact for oppositely charged ions in the RPM and SEM
with L == /2 and 0/3 are also shown (T = 298 K, €, = 78.358, 0 = 4.2 &,
€,/k = 4000 K, w = 0.10).
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TABLE L. The contact values of the distribution functions g, _(r) at » = o and the cusp at r = o + L for a 2-2 electrolyte.*

RPM L =0/2 (SEM) L =0/3 (SEM)
8, _(0) g+_lo) 8+_(L+0) 8+_lo)

Cu MSA HNC/MSA HNC HNC/MSA HNC HNC/MSA HNC
0.1 4.87 2.60 5.93 e 2.62 3.93 15.4
0.5625 3.62 1.51 1.93 1.14 127 2.56 482
1.0 3.28 125 1.42 1.06 1.13 2.18 3.35
1.5 3.10 111 118 1.04 1.08 1.94 2.65
2.0 3.01 1.03 1.07 1.05 1.07 1.80 227

e, =T78.358, T=298K, ¢, = 4000 K, w = 0.10, 0 = 4.2 A.

where y°, _ (L)is the derivative of y_ _(r) with respect to 7
at r=L. The osmotic coefficient ¢, is defined by
P=/pkT = ¢, — 1. The compressibility equation is given by
Eq. (4.8) of Ref. 2 or alternatively Eq. (144) of Ref. 13 with

G,_= 417'J.c° h,_(nPdr
0

—UN)p+4r J ", _(hPdr. (3.11)

We also define the deviations'**»*® from the electro-neu-
trality and second moment conditions'*'S by

Ay =(1—S)) (3.12)
and

A,=(1-25,), (3.13)
where for the SEM,

So=(N) +pr ho(rrr? dr, (3.14)

S, =K2[<N)L2 + pr hp(ridarr® dr] / 6. (3.15)

IV. RESULTS AND DISCUSSION

Except as noted below, the model parameters used in
our calculation of the equilibrium properties of the SEM

6T T T 7 LIS B S B SR S S B BN AR B

41— —
9+ -, HNC—SEM

i g+ -, HNCIMSA-—SEM T
en 2 -
0 V 94+ +) HNC—SEM f -
L 9+ +, HNC/IMSA—SEM .

-2 L 1 1 I 1 I 1 1 | I RN N T S 1
0 1 3 4

tlo

FIG. 5. The pair distribution functions g, _(r}and g, . (r} of a 2-2 electro-
lyte at a concentration ¢,, = 0.1 M according to the HNC/MS and HNC
approximations for the SEM with L =0/2 (T =298 K, ¢, =78.358,
o=424, €,/k = 4000K, w = 0.10). The peak inthe HNC g, . (rlatr=0
(Table II) corresponds to triplet formation. The cusp is discussed in the text.

with L = 0/3 are the same as those used previously with
L = ¢/2. The width w and the depth €,/k of the sticky well
are assumed to be 0.10 and 4000 K, respectively, and the ions
are assumed to have a diameter of 4.2 A and a charge 2e,
where e is the electronic charge. The temperature is taken as
25 °C and the dielectric constant €, of the continuum back-
ground is 78.358. In viewing our results for the two electro-
lytes, it should be borne in mind that the dipole moments of
the ion pairs are in the ratio 3:2. When we compare our MSA
results for dipolar dumbbells with the Monte Carlo simula-
tions>* however, the parameters correspond naturally to
those for which the simulations have been carried out. The
model parameters are now adjusted in both cases (L = 0/2
and 0/3) to give the reduced dipole moments>* u* = ( Su*/
o°)'/2 of 1.52 and 1.42, respectively. The reduced densities
pp0° are 0.462 and 0.526, respectively, where pj, is the den-
sity of the dipolar dumbbells, and the direct correlation func-
tion in the MSA is assumed to be given by Egs. (2.26) and
(2.7). Since the dipoles are formed by allowing two opposite-
ly charged ions to stick together, the total density of the ions
which associate to form dipoles is twice that of the dipoles.
The association parameters A, the reduced association
constant K /K,,," and the average number (N ) of ions bound
to a given ion are plotted against the electrolyte concentra-
tion in Figs. 2, 3, and 4, respectively, for L = 0/3and /2. In
the concentration range shown (0.05-2.0 molar) the values of
A, K /K,, and (N ) are essentially the same in the HNC/MS

20 AL AL E S B R LA B S B M AL B
15 - ]
- —

10 o 9+ -, HNC—SEM B
o ]
- 9.+ -, HNCIMSA—SEM E
S ]
0 ] -

- 94+ +, HNC—SEM 4

- g+ +, HNCIMSA—-SEM b
-5 E I JE. | | | L L) 11 L N ] 1 ]
0 1 2 3 4

rlo

FIG. 6. The pair distribution functions g, _(r)and g, , () for the system at
¢,. = 0.1 M depicted in Fig. 5 except that L = 0/3.
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1.25 — T T
[ - g: _, HNC—~SEM ]
1.00 - ]
- ]
L i
0.75 E g, -, HNCIMSA—SEM ]
o L ]
L —
0.50 — g+ 4+, HNC—SEM ]
0.25 \ 9+ +. HNCIMSA—SEM l
L: ]

0.00 1 1 - 1 1 1 1 l ] | l 1 1 1 1
0 1 2 3 4

rlo

FIG. 7. The pair distribution functions g, _(r} and g . (r} for the system
depicted in Fig. 5 (L = 0/2) except that c,, = 2.0 M. The peak in the HNC
£, +(r) at r = o (Table II) corresponds to triplet formation.

and HNC approximations. The magnitudes of distribution
functions at contact g, _ (o} for oppositely charged ions, also
plotted as a function of the concentration in Fig. 4, are how-
ever quite different for these two approximations. Table I
provides a more detailed comparison. Although the associ-
ation parameter A is larger for L = o/3 thanfor L = 0/2 (see
Fig. 2), the average number of ion pairs (N ) is smaller be-
cause (N ) is determined by the product of 4 and (L /0)? [see
Eq. (1.6)] and an increase in A is compensated for by a de-
crease in (L /o)® when L is changed from 0/2 to 0/3. These
studies confirm our earlier conclusion' that an increase in
the number of bonded pairs is accompanied by a decrease in
the distribution functions at contact for unlike ions (see Fig.
4). Thus, the smaller values of (N ) for L = g/3 areaccompa-
nied by a smaller reduction in the distribution functions at
contact g(o) below those for the RPM (see Table I).
The atom-atom correlation functions for + 4+ and
+ — ions in the HNC/MS and HNC approximations are
shown in Figs. 5 to 8 at 0.1 and 2.0 M, respectively, for
L = g/2 and o/3. The correlation functions for the two ap-
proximations become more nearly alike as the concentration

[ T T T ﬁ LN L} 1 I L T I T L Ll T
20 9+ _ HNC—SEM -
L 9+ _, HNC/MBA—S8EM ]
1.8~ -]
[ ]
) 1.oE— .
0.8 E_ 9+ 1+, HNC—SEM 3
. ™~ 9. +, HNCIMSA—SEM ]
0.0 3

S B S SN
955 1 2 3 4

1
)

FIG. 8. The pair distribution function g, _(r) and g, () for the system at
¢,, = 2.0 M depicted in Fig. 7 except that L = /3.

increases. The HNC/MSA predicts negative correlation
functions near contact between ions of like charge at low
concentrations which is, of course, unrealistic. The appear-
ance of a cusp at L + o in the HNC and HNC/MS correla-
tion functions, when L = 0/2, suggests that it is not an arti-
fact of the approximations used but a real phenomenon
related to what is observed for uncharged systems. The in-
creased prominence of the cusps at higher concentrations
may be aided by greater shielding, as suggested in Ref. 1. The
cusps become less pronounced as L decreases and are hardly
visible when L = ¢/3. Additional features of the correlation
functions are discussed below.

Thermodynamic properties and other data for the SEM
in the HNC approximation are given in Table II. The excess
energies of the SEM and the RPM are drawn in Fig. 9 from
which we note that they are nearly the same for the two
approximations considered. A large part of the excess energy
comes from the binding energy of dimerization. Figure 10
shows the osmotic coefficients ¢ of the SEM and RPM ac-
cording to the HNC approximation. Dimerization apparent-
ly causes a decrease in the pressure. The changes in the free
energy and the osmotic coefficient of the electrolyte when
stickiness is introduced are tabulated in Table III. Since the
association parameter 4 is essentially the same for the HNC/
MS and HNC approximations, the agreement between the
changes in ¢ computed by two different routes is a reflection
of the accuracy with which these differences can be predict-
ed by either of these two approximations.

The + + (or — —)correlation functions in the HNC
approximation show a peak at » = 0 + and L = 0/2 imply-
ing the existence of triplets. This is consistent with the Ha-
miltonian, when L is interpreted as o 4 /2. As expected, the
peak disappears when L < ¢/2 but a small blip (see Fig. 11)
indicating quadruplet formation at r = 3L appears in the
correlation functions for oppositely charged ions, when L
lies between 0/2 and o/3. This is quite distinct from the cusp
at L + o, but the two reinforce each other in the special case
that L = 0/2. These unexpected features, which are absent
in the HNC/MSA, show that the HNC theory does not nec-
essarily obey the restriction to dimers implied by the Hamil-
tonian when L < ¢/2. This can be understood by examining
the leading terms'” in the graphical f-bond expansion of the
indirect correlation functions for + — ions. The diagrams,
to lowest order in the density, which contribute to 4 _(r) for
a linear configuration of four alternating positive and nega-
tive ions with each adjacent pair bonded at a distance L, are
shown below.

- +
. e Moo
N s BN
\\ 4 ’ \\
+ -

A dark line denotes a delta function bonding two oppositely
charged ions separated by a distance L and a dotted line
represents an f bond of — 1 between two charges at a dis-
tance less than the hard core diameter but not equal to L
when the charges are of opposite sign. The root points, de-
noted by open circles, are at a distance 3L apart. If the mag-
nitude of the first diagram is J, the magnitudes of the others
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TABLE I1.* Thermodynamic properties and zeroth- and second-moment tests of HNC results for the SEM of a 2-2 electrolyte.®

J. C. Rasaiah and S. H. Lee: lon assaciation and dipolar dumbbelis

— E**/NkT é, —dlny+/dnc g+ 40 Ay(%) A,(%)
Cy L=0/2 L=0/3 L=0/2 L=0/3 L=0/2 L=0/3 L=0/2 L=0/3 L=0/2 L=0/3 L=o0/2 L=0/3
0.1 345 2.94 0.391 0.483 0.348 0.359 1.26 0.199 0.140 0.210 4.43 34
0.5625 5.01 4.26 0.274 0.395 0.294 0.302 0.673 0.196 0.155 0.070 5.17 1.20
1.0 5.54 4.73 0.288 0.417 0.218 0.225 0.699 0.237 0.239 0.101 10.4 2.62
1.5 5.92 5.06 0.330 0.467 0.117 0.124 0.741 0.282 0.324 0.134 17.0 4.53
2.0 6.18 5.30 0.387 0.529 0.0023 0.011 0.789 0.325 0.396 0.164 23.9 6.67
*g. _(o)is given in Table I.
be,=T78.358, T=298K, €, =4000 K, w = 0.100, ¢ = 4.2 A.
L4 "o S A IR R R B LR R BRI R S R 1.0 L 5 E A S B S B S B B S
6 = [ .
[ : 0.8
s .
[ ] HNC—RPM
_gex | 3]
T - 2, 08 |
o = L HNC—SEM g
3 - L=o3
] 0.4
2 —1 L = of2
] - ]
1 1 1 1 1 l 1 1 1 i l 1 b d I l . 3. L 0.2 1 1 1 ] ‘ 1 ] 1 I | 1 1 1 J;l 1 1 1 [
0.0 0.5 1.0 1.5 20 0.0 0.5 1.0 1.5 20
Cat Cat

FIG. 9. The excess energy E ** in dimensionless units of Nk T"as a function of
the electrolyte concentration c,, for a 2-2 electrolyte according to two dif-
ferent models—RPM and SEM. The lines and points are the results of the
HNC/MS and HNC approximations for the SEM or the MS and HNC
approximation for the RPM, respectively. The other parameters are the
same as for the preceding figures. In addition, de,/dT is assumed to be zero.

FIG. 10. The osmotic coefficient ¢, calculated from the virial equation asa
function of the electrolyte concentration c,, for a 2-2 electrolyte according

to two different models—RPM and SEM in the HNC approximations. The
parameters are the same as for Fig. 8.

1.5 T T T T 1 T T T I T T T T TI T T T
o L = of2.4 1
L tlo = 1.25 §
% ‘7 1.417 ]
1.455 J
. . i N < HNC - SEM
TABLE III. Changes in the excess Helmholtz free energy and the osmotic g+ -0 1.0
coefficient of a model 2-2 electrolyte® when the stickiness is turned on. ; 1.364 .
L = ol2.2 4
A=SEM-RPM 3 b
— AASNKT — Ag, — Ag, - | | 1
Cat (HNC/MSA) (HNC/MSA) (HNC) 0.6 ——
rio
0.1 0.835 0.21 0.22
0.5625 1.25 0.30 0.32
1.0 1.46 0.36 0.37 FIG. 11. The pair distribution functions g, _(r) for oppositely charged ions
1.5 1.63 0.44 0.42 of a 2-2 SEM electrolyte with L = 0/2.2 and 0/2.4 at a concentration
20 1.68 0.50 0.49 ¢, = 2.0 M in the HNC approximation (T = 298 K, €, = 78.358, 0 = 4.2

"¢, =78.358, T=298K,0 =42 A, L =0/2,¢6, =4000K, w=0.10.

A, €,/k = 4000 K, w = 0.10). The arrows point to small peaks at r = 3L
(tetramers) and 7 = L + o (cusp).
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FIG. 12. The sum and difference distribution functions g,(r) and g, (r) for
dipolar dumbbells with L = /2. The dotted, solid, and broken lines show
the Monte Carlo results, MSA results for the SEM with 4 = 1.0 and
A = 1.25, respectively. The model parameters are T=253 K, 0 =35 A,
pp0o’ = 0.462, and i = 6.2 107°° C m, where p, is the density of dipolar

dumbbells. u* = (p2/kTo?) /2 = 1.52.

are — I, — I, and I, respectively. The last diagram {a bridge
function) is absent in the HNC approximation, and cancella-
tion is incomplete when they are summed, leaving a small
probability for the formation of quadruplets at » = 3L in the
HNC approximation. It is easily verified that trimers, with
the end atoms separated by 2L cannot occur if L <¢/2. In
the limit of complete dimerization the calculated atom—
atom correlation functions show no evidence of the forma-
tion of distinct polymeric forms when L < /2.

In Figs. 12 and 13 we compare our MSA correlation
functions with Monte Carlo calculations for dipolar dumb-
bells.** To compute the MSA correlation functions in a self-
consistent way one needs to determine A and 4 in each step of
an iterative procedure beginning with an appropriate trial
function, until the correlation functions and the dielectric
constants, calculated from these functions'® converge. This
is beyond the scope of this paper, but since the effects are

2.0|l||lllll|l|s‘r‘|"rtll

RN N

it iy

»
n
[ W0 T I
(-]

FIG. 13. The sum and difference distribution functions g, (r) and g, (r) for
the dipolar dumbbell system L = 0/3 with4 = 1.0and 4 = 1.12. The mod-
el parameters are T= 253K, 0 = 3.5 A, pp0® = 0.526, 4 = 5.792 10~%°
Cm, where p,, is the density of the dipolar dumbbells. u* =(u?%/
kT0?)*/? = 1.42. See caption of Fig. 12 for explanation of graph.
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FIG. 14. Comparison of the sum and difference distribution functions for
dipolar dumbbells with L = ¢/3 calculated according to the MS and HNC
approximations for the SEM with 4 = 1.0. The other parameters are
T=253K, =35 A&, pp0® =0.0517 {or ¢, =2.0 M}, = 6.2X10~%
Cm. u* = {1*/kTo*}!/? = 1.52. The broken and solid lines show the HNC
and MS approximations, respectively.

small, we determine the MSA correlation functions with val-
ues of A determined from the dielectric constant estimated
by computer simulation.>* We assume € = 5.0 and 9.5, re-
spectively, for L = o/2 and 0/3. This corresponds to 4 val-
ues of 1.25 and 1.12 respectively. Figures 12 and 13 show
that there is a small improvement in the k() correlation
functions near contact over calculations assuming 4 to be
unity. The sum functions are unaffected by the choice of 4
since they reflect the properties of the corresponding un-
charged system. The correlation functions for a fully asso-
ciated 2.0 M electrolyte are also shown in Fig. 14 assuming 4
and the dielectric constant €, of the background equal to
unity, and L = o/3. The agreement between the MS and
HNC approximations for the difference correlation func-
tions at this concentration is good. It is the sum function in
the MSA, which refers to an uncharged system [see Eq.
{2.7)}, that requires improvement.

Fries and Patey'® have solved the HNC approximation
applied to the molecular correlation functions of spheres
with point dipoles, while Morris and Perram?® and Morris
and Isbister® have treated dipolar dumbbells in the interac-
tion site approximation and in the analog of the zero pole
approximation respectively using the site—site Ornstein—
Zernike equation. The methods discussed here and in Ref. 1
illustrate an alternative approach to the study of ions and
dipoles using a single theoretical framework. Its application
to other chemically interesting systems, e.g., the dissociation
of weak acids, would be of great interest.
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APPENDIX A: THE ASYMPTOTIC FORM OF THE DIRECT
CORRELATION FUNCTION FORDIPOLARDUMBBELLS

The OZ equation (2.4) for the difference functions can be
written in Fourier space as )

[1—php(k)][1+pEplk)] =1, (A1)
where (k) and &,(k ) are the Fourier transforms of 4, (r)
and c,(r), respectively. From Eq. (2.6} it follows that

hp(r)=ALS(r — L)/24 + h },(r), (A2)

where A ;,{r) is the contribution to /() from the intramole-
cular part of the indirect correlation functions when associ-
ation is complete [An = (0/L )*}. For this case Fourier trans-
formation of Eq. (A2) gives

holk) =T~ uif) + ) (A3)
where
wik ) = sin(kL J/(kL) = 1 — k2L /6 + -~ (A4)

For sufficiently large » we assume that the direct correlation
functions cp(7) may be written as

cplr) = 5 (r) + Pe*d exp( — zr)/r, (A5)
where the short range part c%(r) contains a delta function
reflecting the delta function in h,(r). Taking the Fourier

transform of Eq. (AS) followed by the limit z—0, we have for
the completely associated electrolyte,

peplk) =pehk) + K4 /k*?
=1—Kk2LY6+KPA/k* + -, (A6)

where we assume no singularities in ¢}, (7) other than the delta
function. Inserting Egs. (A3) and (A6) in Eq. (A1), and col-
lecting terms to order k 2 in ph },(k ) we find

philk)=k2[L%6—1/(24)] + O(k?). (A7)

Comparing this with the expression for the dielectric con-
stant of dipolar diatomics,'®

pl; k) =k2L?[1/6 — (e — 1)/(18 ye)] + O (k*), (A8)
where 18 y = (xL }* = 4mfp(eL )%, it follows that
A=e/le—1). (A9)

The assumption 4 = 1 implies € = «. In contrast to Eq.
(A9) the asymptotic form of the direct correlation function
defined through the site-site Ornstein—Zernike equation is
given by Eq. (1.1) but with a different state dependent coeffi-
cient®! 4 = [1 + €3y — 1)}/[3y(e — 1)]. For nonlinear tria-
tomic molecules the SSOZ direct correlation function di-
verges.”! Chandler et al.?** have discussed improvements
to the SSOZ for which the SSOZ direct correlation functions
are well behaved at infinity. We have been informed recently
that Eq. (A9) has been derived independently by Stell and
Cummings.?*

APPENDIX B: THE EXCESS ENERGY OF THE SEM
WHEN L = 0/n IN THE MSA WHERE 1S AN INTEGER

Equation (2.9a) for the function A, (r} can be written in
the form

rho(r) = g3 (r) + 2mp f dt (e)r — Yol — 1)

— 2mpMU (7), (B1)
where
2apM = —«, (B2)
and J (r} is defined in Eq. (2.17). It follows that
Jr)=J(0), O<r<o/n (B3)

=J (o} =J(0) — p/Q2mp),

where pisredefined hereas 2mpA L ?/24. As discussed in Sec.
II the MSA closure implies that g3 (7) = 0 for » > o. Combin-
ing Eqs. (2.4) and (B1) we find that

&) — pgd(r +o/n)=pM — H, O<r<o/n, (BS)
95 —p[4ap(r +o/n)

—gdlr—o/n)] = —H, a/n<r<(n—1o/n, (B6)
" +pgdr—o/n= —H, (n—1lo/n<r<o, (B7)

wheretheconstant H = — 2mpMJ (0) = «J (0). The solution
g%(r) has n distinct domains and n constants to be deter-
mined by n boundary conditions. The details of the solutions
are determined by whether n is odd or even. However the
essential point in our derivation of the general form for the
energyisthat M, H,and v = 54 /(2n?) = (N )n/2 appearlin-
early as coeflicients of functions of r in the solutions. Thisisa
simple consequence of the fact that Eqs. (B4) to (B6) are lin-
ear differential equations. It follows immediately that the
integrals of the solutions are also linear combinations of M,
H, and v. To see why this is relevant consider the integrated
form of Eq. (B1) which is

Tiri= ~ gyt~ M/2+ 2mp [ deghiep(ir 1)

o/n<r<o, (B4)

—K frJ(t) dr. (B8)
Whenr=0+, °
J(0)= —q%(o)—M/2+2TTP[J(0)L dr g3 t)

+J(o) J:,. de gt )]. (B9)

Equation (B9) is equivalent to

H=pM+1TpM2+21rpr dr gd(t)
0

+2m0M |0~ » J:/" ago). @0

Since the integrals are linear combinations of H, M, and v,
Eq. (B10} can be written in dimensionless units as
H' =vM' + 6gM"? + 129H'[bH' + cM’ + dv/{129)]
— 129M'[eH' + fM' + gv/(129)], (B11)

where b, ¢, d, e, f, and g are coefficients and H' = H /o,
M’ = M /o* Rearrangement of Eq. (B10) leads to a quadrat-
ic equation for H'":

126nH"? + H'[(vd — 1) + 129M '(c — €]}
+M'[V(1 —g)+6qM’'(1 -2f)]=0
whose solution, taking note of Eq. (B2), is

(B12)
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H 24bn
where x = xo and
X=1449’M"?[c — e —2b(1 —2f)). (B14)

The requirement that H'—H' (RPM) when A = 0 deter-
mines the negative sign in front of the square root in Eq.
(B13). Comparing Eqgs. (B13) and (2.22) we find

c—e=1 +f;,n(v)r b= i +.f2,n(v)’ X=f;,n(v)’
(B15)

where f,,(v) =0 when v = 0. For n = 1 to 4 we find, from
the detailed solutions, that X = 0, but we do not have a gen-
eral proof that this holds for arbitrary ». In the saturation
limit v = n/2 and Eq. (2.28) for the excess energy (excluding
the binding energy) follows from Egs. (B13), (B15), and (1.9)
withdlney/dInT=0.
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