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A detailed account of the hypernetted chain (HNC) equation for 1-1, 2-1, 3-1, and 2-2 electrolytes
in the restricted primitive model (charged hard spheres of equal size) is given, and comparisons are made
with some other approximations for the excess thermodynamic functions. On the basis of self-consistency
tests, it is concluded that at a given concentration, the osmotic coefficients from the HNC approxima-
tion decrease in accuracy as the charges on the ions are increased. By comparison with the Monte Carlo
results of Card and Valleau, it is concluded that the excess energy functions for all of these electrolytes are
accurate to within a few percent. It is found that the HNC and DHLL+B; approximations show certain
anomalies in the thermodynamic functions of 2-2 electrolytes which also occur in real electrolytes but
are not predicted to occur in some of the other theories developed recently. The charge densities around
ions, derived from the HNC theory, are compared with the well-known predictions of Debye and Hiickel.
Oscillations in these charge densities are found to occur at sufficiently high concentrations for all of the

model electrolytes considered in this study.

I. INTRODUCTION

Our principal objective here is to present a detailed
report on the hypernetted chain (HNC) equation for
higher valence electrolytes, namely 2-1, 3-1, and 2-2
charge types up to a total ionic concentration ¢ of ~4M.
This equation has been shown to be accurate for 1~1
electrolytes up to ionic concentrations of 2M '* and
even higher? an advantage which has been exploited
in the study of a variety of refinements*® that describe
the thermodynamic properties of single and mixed 1-1
electrolytes in aqueous solution. It is important, there-
fore, to extend our computations for simple models to
higher valence electrolytes, in an effort to determine the
extent to which the same methods can be applied in the
study of more realistic models for solutions of highly
charged ions.

Meanwhile alternative procedures for the investiga-
tion of model electrolytes have been devised. Amongst
these, we refer to the mean spherical approximation
(MS) of Waisman and Lebowitz,” the mode expansion
of Andersen and Chandler (MEX),? and the y-ordering
scheme of Stell and Lebowitz,? for which results are
now available. Calculations by these methods have
been confined to the restricted primitive model (charged
hard spheres of equal size) and comparisons with Monte
Carlo calculations® and the results of the hypernetted
chain equation’-® have lead to the conclusion that they
can yield accurate results for 1-1 electrolytes. It is
desirable, therefore, to extend these comparisons also
to higher valence electrolytes, in an effort to learn how
successful these alternative methods are for these cases.
Indeed, Andersen and Chandler® have already com-
pared their results for 2-2 electrolytes with Monte Carlo
calculations and conclude that the excess free energy
in the mode expansion are somewhat less accurate for
2-2 electrolytes than for 1-1 electrolytes. Similar com-
parisons for the unsymmetrical charge types (2-1 and
3-1) do not appear to have been made.

Our calculations, a preliminary report of which has
appeared,!® are also confined to the restricted primitive

model. On the basis of self-consistency tests, we find
that the accuracy of the osmotic coefficients ¢ calculated
from the hypernetted chain equation diminishes with
increasing charges on the ions, but the extent of the
discrepancies in ¢ is small enough to make the HNC
equation quantitatively useful for 2-1 and perhaps 3-1
electrolytes up to c=2M. We also conclude on the basis
of some preliminary Monte Carlo results made avail-
able to us by Card and Valleau that our calculations
for the excess energy per unit volume E**’ from the
HNC equation are accurate to within a few percent for
all charge types, up to the highest concentrations con-
sidered here. Moreover, the HNC approximation shows
certain peculiarities in the heats of dilution and osmotic
coefficients of aqueous 2-2 electrolytes that are known
to occur in real systems.!''? These anomalies are also
predicted by all of the theories which have their genesis
in Mayer’s theory of electrolytes,”® for example the
DHLL+B,, g(A), and PYA approximations,! but they
do not seem to appear in Andersen and Chandler’s cal-
culations for the mode expansion theory,® nor do they
occur in the mean spherical approximation.” Thus, even
at very low concentrations, which is where the anom-
alies occur, the HNC and DHLL+ B, approximations,
for example, possess some features that are at least
qualitatively accurate for 2-2 valent electrolytes, and
are not present in any of the published calculations for
other theories considered here.

Apart from the excess thermodynamic functions,
there are several equilibrium properties of great interest
in any calculation which claims to be more sophisticated
than the Debye—Hiickel theory. For example, the pair
correlation functions g;;(r) for a pair of ions (4, 7) and
the charge density per unit volume p; around an ion ¢
are expected to show oscillations at high concentrations.
This has been found to occur in our solutions to the
HNC equation for 1-1, 2-1, 3-1, and 2-2 charge types.!®
It has also been reported recently in the solutions to a
modified Poisson-Boltzmann equation for symmetrical
electrolytes.!*

In the following sections we consider each of the
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points mentioned above in turn and discuss them in
greater detail. Our comparisons with the other theories
are to some extent incomplete, because all of the
equilibrium properties in these theories are not yet
available. Nor is there any extensive comparison
here with the Monte Carlo results for higher valence
electrolytes. We have, however, provided extensive
tables of our HNC calculations, so that further com-
parisons with other theories and Monte Carlo results
may be made when they become available.

II. THEORY AND NUMERICAL PROCEDURE

The systems with which we are concerned with are
adequately described elsewhere.! We use the same nota-
tion here and present our results in a similar fashion,
except that, when comparing the properties of electro-
lytes of different charge types, it is usually more con-
venient to use the total ionic concentration

4
c= Z C;

=l
rather than the stoichiometric concentration of the elec-
trolyte. Whenever the stoichiometric concentration is
referred to, we use the notation C,; rather than ¢, in
order to avoid confusion with the concentration of
species 2.

The underlying theory and numerical Fourier trans-
form methods which we use to solve the analogs of the
hypernetted chain and Percus-Yevick equations are
also fully described in previous publications.! To enable
us to discuss certain modifications to our numerical
procedure for 2~2 electrolytes, we find it necessary to
recall some parts of the theory and procedure here. In
view of its importance as an approximation at low con-
centrations, and its use in the virial-compressibility
test for most of our HNC results, we present a brief
discussion of the DHLL+4B, approximation. Some
general consequences which follow from the solutions
to the mean spherical approximation for the restricted
primitive model are pointed out, particularly in regard
to the anomalous properties of 2-2 electrolytes described
earlier,

A. DHLL+B, Approximation!® 16

When only the first term beyond the limiting law is
included in Mayer’s cluster expansion for the excess
free energy per unit volume Fe*, we have the DHLL+ B,
approximation

Fex 3 ¢ o
—_ — = —— CiC'B{' K), 2.1

(kT)DHLL—}-B, 127 + IZ=:1]Z=:1 7 J( ) ( )
where the second virial coefficient B;;(x) has the form"”

By())=2r [ {expl—Bui* ()]

0
X exp(gij) —1—qi—g:%/ 2} r*dr, (2.2)
in which #;*(7) is the short range potential, 8=1/kT
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is the inverse of the Boltzmann constant & multiplied
by the absolute temperature 7', 1/« is the Debye length
defined by

4r 2
2= E .
&T =, (2:3)
and
gii(r) = — (eie;/ekTr) exp(—«r). (2.4)

Here e; is the charge on species ¢ and e is the dielectric
constant of the pure solvent. If we substitute for ¢;;(r)
from Eq. (2.4) in the expression for Bi;(x) and make
use of the following identities

Zl > cicieie;= (Z; ciei)?=0, (2.5)
il =1 =
a 0 ' 2 kT 2
20 2 ciciedet= (3 cie?)t= (K . ) ,  (2.6)
=l §=1 =1 4r
and
/ exp(—2«r)dr=(2x)71, (2.7)

0
we obtain the simpler expression

Fex) 5K3 . .
_— [ CiC'Si' , 2.8
( kET/puLieB, 967 + :.Z=1 El 8 (x), (2.8)

where
Sii(k) =27 /w Cexp(—Buq*) exp(qs;) —1Jr%dr.  (2.9)
0

The other thermodynamic functions in the DHLL4-B,
approximation are available from standard thermo-
dynamic relations. The explicit relations are somewhat
lengthy and are given in the Appendix.

The integrals in Eq. (2.9) and Egs. (A8)-(Al1)
are readily evaluated for any short range potential by
standard methods (e.g., Simpson’s rule}. Since the
upper limit of integration in our numerical procedure is
finite, a correction must be applied for the remainder.
This is easily estimated analytically with the assump-
tion that exp(qi;) —1~qs; for r>7max, where #pnax is
the maximum range of r in the numerical integration.
At this level of approximation, numerous tables!s:¥
are also available for calculating the thermodynamic
functions in the primitive model, but it is usually more
convenient and accurate to use the equations given
here. A check on our calculations for Iny, against the
results obtained with the aid of Poirier’s tables® re-
vealed only small discrepancies in the third significant
figure. We attribute this to the fact that Poirier’s
tables summarize the effect of the first 16 terms in an
infinite series of integrals which contribute to B:(x).
The method given here, which was first suggested by
Meeron,'® reduces this infinite series of integrals to a
single integral. Meeron obtained equations in closed
form for ¢ and Ilny; in the restricted primitive model.
Our equation for ¢, which is generalized to any short
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HIGHER VALENCE ELECTROLYTES

range potential, has also been obtained by Kelbg®
without the use of diagrammatic techniques or Mayer’s
theory. As far as we know, there has been no discussion
of the excess energy functions for higher valence elec-
trolytes at this level of approximation and beyond,
prior to our discussion in Ref. 10.2

In Fig. 1, we present the osmotic coefficients and
E=/I in this approximation as deviations from the
Debye-Hiickel limiting law, for electrolytes with dif-
ferent charges on the ions. The distance of closest ap-
proach a;; is taken as 4.2 A for all pairs of ions in the
restricted primitive model, which is the one considered
here. I is the ionic strength defined by

Ma

I=% C{Ziz (210)

=1

where z; is the valence of ion i. E=/I is related by a
simple numerical factor to the heat of dilution.”

We note that the deviations in ¢ and E®/I for our
model 2-2 electrolyte are in the same direction as those
observed for aqueous solutions of ZnSO,, CuSO;,, CdSO,
and other real 2-2 electrolytes.!"** For our model 4-1
electrolyte, however, the deviations in E**/I are the
opposite of those observed for Na,Fe(CN); and
K4Fe(CN)s in aqueous solution.'? It is plausible that

=T T T T
eol gj=a.24,1=25°c  _

(E*Y) B

4= -2
) i
-|
cal
per mole
a0k -
i L 1 {
I 1 1 T
- 2-
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31
Jef-
=1

o8|~ i~
o -

1 1 1

. Z s .

F16. 1. The contribution of the second virial coefficient to
the thermodynamic functions Eex/I and ¢ for electrolytes with
different charges on the ions, but with the same ionic radii of
2.1 A. These curves also represent deviations from the Debye-
Hiickel limiting law.
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F16. 2. Osmotic coefficients calculated from the g(A) and
HNC approximations for 1-1 and 2-2 model electrolytes using
the virial theorem. Cg is the stoichiometric molarity of the
electrolyte.

the distance of closest approach in our model is too
small to describe the situation here for such large
anions. Indeed when these distances are increased
sufficiently, we find deviations in E**/T for 4-1 salts
in a direction opposite to what has been described
earlier. It appears, therefore, that the direction in
which the thermodynamic functions deviate from the
limiting law could be determined even at high dilution
by the short range forces that operate between pairs
of ions. Important examples are the positive and nega-
tive deviations in the osmotic coefficients of tetralkyl-
ammonium halides. These have been investigated by
Kelbg,!® Ulbricht and Ebeling,® who assumed a square
well for the short-range potential.

B. HNC, PYA, and g(A) Approximations

Our solutions to the analogs of the hypernetted
chain and Percus-Yevick equations deal with a pair
of equations, one of which is exact, and the other of
which is approximate. In the notation of Ref. 1, the
exact equation may be written in matrix form as

r= Xk h-t+gk X+qk Xk, (2.11)
where
hiy=gii—1,
Xoj= hij—qij—1ij, (2.12)

and ¢;; has been defined earlier in Eq. (2.4). 7;; is the
sum of a certain class of cluster diagrams with cutting
points which contribute to g;;. The analog of the hyper-
netted chain equation HNC supplements this with the
approximation?!

gii= exp(—Bui*+qitri), (2.13)
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TasLE I. Percentage deviations from zeroth and second
moment conditions for unsymmetrical model electrolytes in the
HNC approximation. T=298.16°K, e=78.358, a;;=4.2 A.

2-1 3-1
¢® (mole/liter) Agb Ay b AP Ay b
0.15 0.48 0.03 vee
0.2 0.79 0.06
0.8 0.57 0.11 0.73 0.09
1.8 0.69 0.37
2.0 0.92 1.77
4.0 1.18 1.91 1.32 5.40

8 Total ionic concentration.
b Reference 10.

and the analog of the Percus-Yevick equation PYA
assumes??

gii= exp(—Bui*+qi;) (1+74). (2.14)

The starting point of our usual iterative scheme for
solving the HNC and PYA equations is the g(A) ap-
proximation in which the lowest order term (o)
which contributes to 7;; is used in place of 7.; in Eq.
(2.14). We then obtain the g(A) approximation

gii(A) = exp(—Bui*+¢i;) [14 (o) ;). (2.15)

(70)s; is defined in Eq. (3.6) of Ref. 1. Since it is a
known function of the distance of separation 7, the
thermodynamic functions which correspond to this ap-
proximation follow readily without the need for any
supplementary information.

The successful use of the g(A) approximation to
begin iteration depends on its own accuracy as a useful
approximation. Figure 2 shows that, for 1-1 electro-
lytes, it is a good approximation by comparison with
the highly accurate HNC equation, but for 2-2 electro-
lytes the divergence between the HNC and g(A) ap-
proximations is sometimes so large, that neither the
HNC nor the PYA could be solved at low concentra-
tions by this method. In fact, the difference can be so
great that not only do the solutions for 7 refuse to con-
verge, but the large magnitude of r;; after a few itera-
tions leads to an overflow in the machine register when
exp(g:;) is being computed in the HNC approximation.
Several artificial attempts to force r;; to remain within
bounds during the early iterations failed to produce
convergence. With one exception, at C,,=0.001, these
difficulties occurred below C,,=0.025M. At a stoichi-
ometric concentration of 0.001M however, we found,
by accident, that the usual g(A) trial functions lead to
convergence for both the HNC and PYA equations.
A few attempts to repeat this success at concentrations
below or above C,,=0.001 failed! We were finally able
to solve the HNC equation in this region by using the
7 matrix, obtained from solutions to the same equation
at higher concentrations, as the starting point for itera-
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tions at lower concentrations. Beginning at C;,=0.025M,
at which concentration the g(A) trial function can be
used, we proceeded in sequence to solve the HNC
equation at C,,=0.02, 0.015, 0.01, 0.005, 0.0025, 0.0016,
0.0004, and 0.0001. The 7 matrix, which was available
in the memory of the computer at the end of each cal-
culation at a definite concentration, was used to begin
iterations at the next concentration. In doing so, we
ignored the effect of slight changes in the spacing 7 on
the 7 matrix when moving from one concentration to
another. This could have been corrected by interpola-
tion of 7 to the exact values of r, but since we were only
concerned with starting the iterations adequately, we
did not feel that this was worth the effort. Thus, only
minor changes in the original program were necessary,
but the solutions to the whole set of concentrations
beginning at C,=0.025M had to be obtained in se-
quence in one uninterrupted run.

A very general change in all of our calculations was
that the number of points N was increased from 512
to 1024. As before,! the spacing 7 was usually ~0.015/«,
but we adjusted it whenever necessary to make certain
that the maximum 7, #max, was at least nine times the
distance of closest approach. Since rma.x was at least
twice as large as the maximum range of r in our pre-
vious computations,!:? we felt confident in ignoring the
effect of the continuation in g;;(r) for #>7y,.x on the
thermodynamic properties. Uncertainties in the asymp-
totic form of g;;(r), especially when there are oscilla-
tions, made it necessary for us to attempt to reduce the
effects of g;;(r) for large r. The error in the thermo-
dynamic properties due to truncation is small even when
N=23512, but the error in the second moment conditions
from this cause can be large, particularly for highly
charged ions. These matters are discussed at greater
length elsewhere!® in connection with the zeroth and
second moment conditions.

Groeneveld has shown that the HNC®#* and MS ap-
proximations®® belong to a general class of theories for
which the second moment condition is exact. Any de-
viations in our numerical solutions to the HNC equa-
tion must come from errors in our numerical procedure,
due to the truncation of g;;(r) or from other sources.
The percentage errors Ao and Ap (defined elsewhere!?)
in the zeroth and second moment condition respec-
tively for 2-1 and 3-1 electrolytes are presented in
Table I. Tabulations of the errors in the moment con-
ditions for 1-1 and 2-2 may be found in Refs. 3 and
10, respectively.

In comparison to the HNC approximation, the de-
viations from the zeroth and second moment condi-
tions in the g(A) approximation for 2-2 electrolytes
are large, but the PYA equation, in so far as the mo-
ment conditions are concerned, appears to be quite
satisfactory (Table II). Surprisingly, at high concen-
trations the latter approximation gives negative values
for the correlation functions of like ions at contact.
This unphysical behavior extends out to about 1 & away
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from contact at C,,;=0.5625M. For this reason, our cal-
culations for the PYA equation are sparse and the
results have not been scrutinized with the same thor-
oughness with which the HNC results have been
treated.

Our solutions to the HNC and PYA equations obey
the self-consistency requirement that gy _(r) =g_ . (r)
for all electrolytes. These conditions are also met in
the g(A) approximation, but are not satisfied by the
Poisson—Boltzmann equation for unsymmetrical elec-
trolytes® (e.g., 2-1 and 3-1 electrolytes).

C. Other Approximations

The mean spherical approximation has been solved
in closed form for the restricted primitive model by
Waisman and Lebowitz.” The thermodynamic functions
which follow from their analysis, and are applicable to
all charge types, are the following:

Ex/ckT= — [ 14+x— (142x)* ] /dxadc, (2.16)
¢r=¢"+ (4ma’c) [w+a(1422)2—F(1+2x) %243,

(2.17)
o= .0+ (Ee'/3ckT), (2.18)
.=, (2.19)
and
(Inyy) g= Iny®4- (E~'/ckT), (2.20)

where x=«a, and the superscript zero refers to the
properties of the corresponding uncharged hard spheres
of radius @¢/2 in the Percus-Yevick theory. ¢g is the
osmotic coefficient obtained from the energy equation.’
The osmotic coefficient ¢, from the virial theorem
follows from Eqs. (3.3) and (3.4) and the expression
for the radial distribution functions at contact,” namely

gii(ai;) =gi0(a:;) —[ee;(14+B) /akT], (2.21)
where

B=—[1+x— (142x)2]/x.

The second term in Eq. (2.21) makes no contribution

to ¢, on account of the electroneutrality condition,
Eq. (2.5),2 and

(2.22)

¢0=143(wc) 3= 3 xix;g:°(aij) 6,

fm=] j=1

(2.23)

where x; is the mole fraction of species i. The os-
motic coefficient via the compressibility equation
follows from the definition of the direct correlation
function in the mean spherical approximation, the
electroneutrality condition and the generalization of
the compressibility equation for mixtures.?® Equation
(2.20) is discussed in Ref. 3. It is known that Egs.
(2.16), (2.17), and (2.20) are fairly accurate for 1-1
electrolytes.”3 All of these thermodynamic functions,
except ¢, are functions only of xa and ¢, and have the
correct asymptotic form at infinite dilution. They ex-
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Tapre II. Percentage deviations from the zeroth and second
moment conditions in the g(A) and PYA approximations for
2-2 electrolytes. T=298.16°K, ¢="78.358, a.;=4.2 A.

g(4) PYA
Cet Ao Ay Ja¥ Ay
0.001 18.8 28.5 1.88 0.087
0.0625 7.69 14.8 1.33 0.241
0.125 —21.5 —28.0 1.21 0.250
0.5625 5.63 —109.0 0.846 0.614
1.000 31.6 —110.0 1.03 1.85

hibit deviations in the same direction from the limiting
law, irrespective of the charges’ on the ions. The de-
viations are also quantitatively the same at the same
ionic strength I to within a scaling factor > 2% where
x; and z; are the mole fraction and valence, respec-
tively, of species i. Since I=1Y" ¢;z:?, it also follows
that Eex/I is the same function of I for all electrolytes.
Thus, the two general types of deviations exhibited by
the DHLL+-B,, g(A), PYA, and HNC approximations
for the restricted primitive model are absent in the
mean spherical approximation for the same model.

Andersen and Chandler® have derived a general per-
turbation theory which they apply to the restricted
primitive model electrolyte by considering the system
of uncharged hard spheres as the reference system and
the Coulomb potential as the perturbation outside the
hard core. The mode expansion, as it is called, expresses
Fex— Fex9 35 the sum of an infinite series of terms a.,,
each of which involves the perturbing potentials and
the correlation functions of the reference system:

_ﬁ(Fex_Fex,O) — i an.

n=1

(2.24)

It has recently been shown? that the first three modes
(i.e., @, up to »=3) are identical with the first few
terms in the y-ordering scheme of Stell and Lebowitz.®
This correspondence does not extend further, but since
Andersen and Chandler present numerical results only
as far as the two mode term, the results from the two
theories are the same, at least to this level of approxi-
mation, when the perturbing potentials are the same.
With a suitable choice of the perturbation for r<a,
convergence is rapid and the results of ¢, Inyy and
Fex are highly accurate for 1-1 electrolytes.®3 In a sub-
sequent paper, Andersen and Chandler® use the flexi-
bility in the choice of the perturbation within the hard
core, to optimize their mode expansion up to n=1, and
obtain the mean spherical approximation as the first
mode term. Their numerical calculations, which are
terminated after two modes, have the same deficiencies
in regard to deviations from the limiting law as the
mean spherical approximation. However, they have
referred to the fact that each of their a., for >3 con-
tains a so called watermelon diagram consisting of ¢
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Tasre II1. Equilibrium properties of a 1~1 model electrolyte in the HNC approximation 7'=298.16°K, e=78.358, 9¢/dT=0, a;;=4.2 A.

Cae® 8 1nv;/8 Inc by —Eex'/ckT gr-(ar ) gealery) =g _(a-)
0.001 -0.0164 0.9885 0.0361 5.108 0.1963
0.005 —0.0328 0.9765 0.0774 4.715 0.2134
0.01 —0.0422 0.9691 0.1059 4.464 0.2259
0.05 —0.0608 0.9493 0.2078 3.701 0.2728
0.10 —0.0581 0.9442 0.2693 3.327 0.3035
0.20 —0.0357 0.9479 0.3418 2.963 0.3427
0.40 +0.0298 0.9719 0.4245 2.640 0.3943
0.60 0.1076 1.0045 0.4775 2.485 0.4336
0.80 0.1943 1.0418 0.5169 2.396 0.4679
1.0 0.2893 1.0829 0.5487 2.344 0.4999
1.2 0.3922 1.1273 0.5753 2.314 0.5309
1.4 0.5036 1.1749 0.5983 2.300 0.5614
1.6 0.6239 1.2258 0.6187 2.297 0.5920
1.7 0.6882 1.2524 0.6277 2.298 0.6072
2.0 0.8935 1.3375 0.6528 2.316 0.6542

8 The stoichiometric concentration of the electrolyte in moles per liter of solution.

bonds in parallel, which, when summed to infinity,
gives essentially Eq. (2.2) of the DHLL+B, approxi-
mation.® This approximation, we have seen, has the
desired properties with respect to deviations from the
limiting law, and leads us to suggest that the union of
the mode-expansion or +y-ordering scheme with the
Mayer expansion may provide a more successful theory
than either one of them independently.®

III. RESULTS AND DISCUSSION FOR THE
RESTRICTED PRIMITIVE MODEL

Our results for the HNC and PYA approximations
are presented in Tables III-VI. The excess internal
energy is tabulated in the dimensionless form E='/ckT,
where the prime indicates that the dielectric constant
and contact distances a.; are fixed at all temperatures

TasiLe IV. Equilibrium properties of a 2-2 model electrolyte in the HNC approximation. 7'=298.16°K, ¢="78.358, d¢/3T =0,

d,','=4.2 j{

Co ® 3 1Iny,/8 In¢ b — Ee*' [ckT g+ ~(ay ) gr4(ap ) =g-(a_)
0.0001 —0.0538 0.9635 0.1282 664.2 0.0876
0.0004 —0.1028 0.9291 0.2678 490.3 0.1572
0.001 —0.1474 0.8938 0.4192 358.4 0.2170
0.0016 —0.1728 0.8719 0.5164 294.1 0.2543
0.0025 ~—0.1983 0.8483 0.6242 241.0 0.2213
0.005 —0.2378 0.8077 0.8158 170.4 0.1734
0.01 —0.2752 0.7638 1.034 116.0 0.1322
0.015 —0.2955 0.7367 1.176 91.81 0.1115
0.020 —0.3089 0.7177 1.281 77.27 0.1011
0.025 —0.3186 0.7030 1.365 67.50 0.0943
0.0625 —0.3522 0.6452 1.737 38.29 0.0780
0.1 —0.3637 0.6198 1.941 28.48 0.0761
0.2 —0.3686 0.5929 2.259 18.42 0.0802
0.3 —0.3599 0.5871 2.450 14.32 0.0871
0.4 —0.3449 0.5893 2.591 12.02 0.0941
0.5625 —0.3120 0.6028 2.757 9.823 0.10353
0.8 —0.2504 0.6341 2.929 8.044 0.1226
1.0 —0.1880 0.6666 3.041 7.139 0.1367
1.4 —0.0355 0.7436 3.212 6.057 0.1654
1.7 +0.1052 0.8113 3.310 5.568 0.1882
2.0 0.2692 0.8865 3.396 5.237 0.2122
2.4 0.5332 1.000 3.491 4,943 0.2472
2.7 0.7707 1.096 3.553 4.799 0.2760
3.0 1.047 1.203 3.611 4.708 0.3073

* The stoichiometric concentration of the electrolyte in moles per liter of solution.
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TaBLE V. Equilibrium properties of 2-1 and 3-1 model electrolytes in the HNC approximation. 7'=298.16°K, = 78.358,
d¢/8T=0, a;;=4.2 A.

Cot ® dlny,/dIne L —ExfckT g _(a;0)  gealery) g (o)
2-1 Electrolyte
0.00067 —0.0467 0.9676 0.1035 24.65 0.0017 0.2318
0.005 —0.1044 0.9239 0.2631 18.29 0.0033 0.2712
0.05 —0.1748 0.8502 0.6324 9.391 0.0106 0.3894
0.1 —0.1749 0.8353 0.7830 7.287 0.0157 0.4311
0.2 —0.1452 0.8358 0.9492 5.623 0.0238 0.4790
0.26667 —-0.1174 0.8442 1.0225 5.060 0.0286 0.5025
0.4 —0.0518 0.8696 1.1300 4.389 0.0376 0.5419
0.6 +0.0653 0.9199 1.2410 3.855 0.0505 0.5932
0.8 0.2019 0.9796 1.3227 3.562 0.0636 0.6413
1.0 0.3595 1.0475 1.3870 3.383 0.0772 0.6888
1.33333 0.6710 1.1778 1.4730 3.229 0.1019 0.7706
3-1 Electrolyte
0.0005 —0.0848 0.9411 0.2006 113.0 0.0000 0.3233
0.001 —0.1134 0.9201 0.2807 97.35 0.0000 0.3827
0.005 —0.1958 0.8530 0.5638 57.60 0.0000 0.5439
0.01 —0.2325 0.8186 0.7279 42.75 0.0000 0.5919
0.025 —0.2730 0.7732 0.9783 27.39 0.0001 0.6192
0.05 —0.2905 0.7435 1.1890 19.05 0.0001 0.6227
0.0625 —0.2922 0.7359 1.2606 16.88 0.0001 0.6237
0.1 —0.2879 0.7242 1.4178 13.10 0.0002 0.6267
0.2 —0.2486 0.7265 1.6602 9.015 0.0004 0.6453
0.25 —0.2222 0.7351 1.7409 8.015 0.0006 0.6568
0.3 —0.1933 0.7461 1.8853 7.297 0.0007 0.6687
0.5 —0.0545 0.8065 2.0023 5.682 0.0013 0.7200
0.5625 —0.0039 0.8293 2.047 5.385 0.0016 0.7368
0.7 0.1187 0.8839 2.1351 4.908 0.0022 0.7752
0.85 0.2709 0.9510 2.2178 4.562 0.0029 0.8195
1.000 0.4503 1.0264 2.2830 4.318 0.0038 0.8665

8 The stoichiometric concentration of the electrolyte in moles per liter of solution.

and pressures. This makes the potential of average
force at infinite dilution, #;;(r), a function only of », and

= (2eckT)1Y. 3 CiCjeiej/ hij(rYdmrdr.  (3.1)
ckT =1 j=1 0

We take € to be 78.358, which is the dielectric constant
of water at 25°C, the temperature of interest in all our
calculations. The energy E¢* of a primitive model system
in which the temperature dependence of the dielectric

ex/

constant is not assumed to be zero, is related to E=' by
E==E~[14+ (8 Ine/d InT)]. (3.2)

For water at 25°C, 9 Ine/d InT= —1.3679. The energy
functions shown in Figs. 1 and 10 are derived from
Eq. (3.2).

We have also recorded the correlation functions at
contact in our tables, and displayed them in Fig. 3,
especially to emphasize the enormous changes in g, _

TaBLE VI. Equilibrium properties of model 2-2 electrolytes in the PYA approximation. T'=298.16°K, e=78.358, d¢/dT=0,

aii=4‘-2 ;\
Cet d1Iny./8 Inc b —Eex' /ckT g+ (a4 -) g+ +(op ) =g (a_)
0.001 —0.1388 0.89%46 0.4067 322.9 0.0098
0.0625 ~0.3255 0.6396 1.728 36.88 0.0575
0.125 ~0.3453 0.5231 2.014 22.10 0.06522
0.5625 ~0.0944 0.4215 2.6649 6.153 —0.2610
1.000 ~+0.2233 0.3668 2.9667 4.225 —0.4192=

8 See Sec. 11 for comments on unphysical behavior.
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F16. 3. Correlation functions g, _{a4 ) for oppositely charged
ions at contact in the HNC approximation. ¢ is the total jonic
concentration.

(a4 ~) when the charges on the ions are increased. We
know from the Monte Carlo work of Card and Valleau
that at least the order of magnitude of these correla-
tion functions at contact is correct in the HNC ap-
proximation.

In Figs. 4 and 5 we compare the HNC osmotic co-
efficients calculated via the virial and compressibility
equations with each other and with ¢z from the MS
approximation. For 2-2 electrolytes, the osmotic co-
efficients from the optimized mode expansion theory
which yields the MS approximation as the first mode, is
also displayed. For a detailed comparison of several of
these approximations for 1-1 electrolytes with the Monte
Carlo results we refer the reader to Ref. 3.

It is evident from these figures that the osmotic co-
efficients from the HNC equation, when judged by the
virial-compressibility self-consistency criterion, become
less accurate for higher valence electrolytes. The largest
discrepancies occur for 2-2 electrolytes, and it is pos-
sible that, in this case, the theory will not be more than
qualitatively useful in the study of refined models. For
the other, 3-1, 2-1, and 1-1, model electrolytes, how-
ever, the discrepancies in the osmotic coefficients from
the HNC equation, which are plotted on a larger scale
in Fig. 6, are not as great. The discrepancy between
¢, and ¢g in the MS approximation is very large. Since
the osmotic coefficients from the truncated mode-
expansion and +y-ordering schemes have been deter-
mined by only one method, these results have so far
escaped scrutiny with respect to their self-consistency.

We can analyze our results more carefully by sepa-
rating ¢., the osmotic coefficients from the virial theo-
rem, into the sum of two terms, when the system of
interest consists of charged hard spheres®.

$o—1=CONTACT+ (E=~'/3¢kT),
where Ee~’'/ckT is given by Eq. (3.1)

(3.3)

CONTACT=3(wc) 2. 2 waxjgis(ai)ai®  (34)

=1 j=1

JAYENDRAN C. RASATAH

and x; is the mole fraction of species i. Equation
(3.3) is exact and follows from the standard ex-
pressions for ¢, and E®'/ckT®. The pair correlation
functions at contact contribute to the CONTACT
term, while Fe*’ is determined by integrals of the form

/ " his(ryrdr,
0

where h,;(r) = gi;(r) — 1. These two terms are evaluated
to different levels of accuracy by different theories and
a comparison of the HNC, PYA, and MS approxima-
tions with some preliminary Monte Carlo studies of
Card and Valleau shows that for all of the electrolytes
considered here the excess energy E'/ckT in the HNC
approximation is accurate to within a few per cent
(Fig. 7). This means that the errors in the HNC cal-
culation of ¢, for higher valence electrolytes come
mainly from errors in CONTACT. Because the mag-
nitude of g, —(a, —) from the HNC equation can be
large [Fig. (3)7, a small percentage error in this quan-
tity can cause a large error in the CONTACT term.
Errors in the CONTACT term of ¢, also show up in
other theories because of their approximate nature,

T T T 1 }W—
/THNC,,
¢ - °ij =42 A. I-1 /’ HNCC N
]
€ =78.358 /
t=25°C

1 1 1 1 §

[

F1G. 4. Osmotic coefficients for 1-1, 2-1, and 3-1 model
electrolytes from the hypernetted chain (HNC) and mean
spherical (MS) approximations. The subscripts E, v, and ¢
refer to the energy, virial, and compressibility equations which
provide alternate routes to the osmotic coefficients in the same
approximation.
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but it is worth pointing out that the same term can be
an important source of error in supposedly exact
Monte-Carlo calculations of ¢,, when g;;(a) is eval-
uated by extrapolation of the radial distribution func-
tions gi;(r) from r>a to r=a. The uncertainty in
this extrapolation can be far more serious for higher
valence electrolytes because of the large magnitude of
g:;(r) (see Fig. 3) and its rapid variation with 7 in the
neighborhood of r=a.

The errors in CONTACT and E*'/ckT are gen-
erally larger in the MS approximation than in the
HNC approximation. In particular, since 14-CON-
TACT in this theory is equal to ¢,° (the osmotic
coefficient of uncharged hard spheres in the Percus-
Yevick approximation), the error in ¢, from this
source is enormously increased when the ions are
more highly charged. The magnitude of the error in
this term may be gauged from the magnitude of the
difference between the HNC and MS CONTACT func-
tions plotted in Fig. 8. Inaccuracies in E®'/ckT (see
Fig. 7) are also reflected in the MS ¢,. The error in
¢,, the osmotic coefficient obtained via the compressi-
bility equation, is also large since this is just ¢!. In
spite of these inconsistencies, the great advantage of the

1.2 = T
¢ 2-2, oij-4.2l,
€ =78.358, t=25°C /

L

1
o 6 L2 L8 24

F1G. 5. Osmotic coefficients for a 2-2 model electrolyte from
the hypernetted chain (HNC), mean spherical (MS), and mode
expansion (MEX) theories. The subscripts E, v, ¢ have the
same meaning as in Fig. 4.
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1 1
t=25°C, a;= 4.2 &, HNC 1-1

o —— MS, _

\ HNC,

\ v

N\,
ay o HNC,
\\\
o4l ‘\\ .
-~ \MS'
-~
-+ . 1 1

o o, M3
‘|‘ HNC,
i
04r| w
\
\
ims HNC,

\ 1 | 1 )
6 20 X

(total ionic molarity)

Fic. 6. Osmotic coefficients compared on an enlarged scale
as the difference from the mean spherical results obtained via
the energy equation. The subscripts E, v, and ¢ have the same
meaning as in Fig. 4.

MS approximation is that it is simple to apply and gives
relatively accurate values of ¢ and E=*'/ckT for 1-1, 2-1,
and 3-1 electrolytes when Eqs. (2.17) and (2.16) are
used to evaluate these thermodynamic functions. Un-
fortunately, this usefulness does not extend to 2-2
electrolytes, and the convenience of an analytic solu-
tion is lost when potentials more realistic than those im-
plicit in the restricted primitive model are investigated.
This lack of flexibility also occurs in the mode ex-
pansion theory. In contrast, when the computational
facilities are available, the numerical solution to the
HNC (and PYA) approximations are just as easily
carried out for complicated or more realistic potential
functions, as they are for the simple functions that cor-
respond to the primitive model.*5

It is of interest to compare our results for 2-2 elec-
trolytes with the Bjerrum? and Fuoss® theories of ion
association, which are widely used in the interpretation
of the excess free energies of electrolytes judged to be
significantly associated.? In the Bjerrum theory, two
oppositely charged ions at distances rp closer than
eie_/2¢kT are assumed to be paired and are treated
as neutral molecules with an activity coefficient of
unity. For a 2-2 electrolyte in aqueous solution at
25°C, rz=14.3 & and an association constant Kz=237.3
mole/kg is calculated. In Fuoss’ theory, ions in contact
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F16. 7. The excess energy, in the dimensionless form Ee*'/ck T,
calculated using the HNC and MS approximations for model
electrolytes. Monte Carlo results of Card and Valleau for 2-2
and 3-1 electrolytes are also shown.

are assumed to be paired, and a different association
constant Kr=169.7 mole/kg is obtained. When the
free ions are treated according to the Debye-Hiickel
theory, it is generally assumed that the parameter d,
which denotes the distance of closest approach in the
Debye-Hiickel formula, is the cut-off distance for pair
formation.” With this assumption, we find

¢(Bjerrum) > ¢ (Fuoss)

in spite of the larger association constant in the Bjerrum
theory which would be expected to yield a smaller os-
motic coefficient. The effect of the large magnitude
of d, in Bjerrum’s association theory is diminished
when d is taken as g, the sum of the ionic radii. The
order of the osmotic coefficients is now reversed, and
is the same as the order expected from the magnitudes
of the association constants alone. As may be seen from
Fig. 9, this reversal would increase the discrepancy
between the HNC and Bjerrum theories. In what
follows, we retain the usual assumption, whenever as-
sociation theories are considered, that the parameter d
in the Debye—Hiickel formula is also the cut-off dis-

AlContact)
0.6

1 T
«78.358, ojj=4.24, 1= 25°C .

1 & 1 L
v] 1.0 2.0 3.0 4.0 ¢
F16. 8. Differences in the CONTACT term [Eq. (3.4)] cal-
culated in the HNC and MS approximations. A(CONTACT) =
CONTACTunc—CONTACTms.

JAYENDRAN C. RASAIAH

tance for pair formation whether this refers to contact
ion pairs or not.

In Fig. 9 we compare the osmotic coefficients cal-
culated from the Debye-Hiickel formula

¢pa=1—(&/24nc)o(kd), (3.5)
where
o (kd) =[3/(xd)*I{1+xd—[1/(1+xd) =2 In(14-«d) }
(3.6)

and d=ga, with the results from the HNC and DHLL+4-
B; approximations. These are also compared with the
osmotic coefficients derived from the Bjerrum and
Fuoss association constants, assuming Eqs. (3.5) and
(3.6) for the free ions with d equal to the appropriate
cut-off distance for pair formation. Deviations from
the Debye-Hiickel limiting law DHLL are drawn in

K T I T )
\
ay* 4.2, «=70.358, tv28°C

Fre. 9. Osmotic coefficients for a 2-2 electrolyte at low con-
centrations according to several different theories. DH—Debye-
Hiickel [Eq. (3.5)]; DHLL+B,—Debye-Hiickel limiting law
plus second virial coefficient in Mayer’s theory; HNC, and
HNC.—Hypernetted chain approximation; B and F—Associa-
tion theories in which the association constants for ion-pairs
are those derived by Bjerrum and Fuoss, respectively. The
numbers in parentheses denote the parameter d in the Debye—
Hiickel formula for free ions, which is also the cutoff distance for
pair formation in the association theories.

Fig. 10. The association theories and the HNC and
DHLL+B: approximations show qualitatively the
same behavior with respect to the limiting law, in sharp
contrast to the mean spherical approximation and
the optimized mode expansion theory. Returning to
Fig. 9, over the range of concentrations 0.003<C,,<
0.02, in which the association theories are expected to be
useful, we find poor agreement between the different
calculations of ¢ which show anomalous behavior.
Bjerrum’s theory has been criticized on the grounds
that the cut-off distance rg=e,e./2¢kT is arbitrary.®
In a completely self-consistent calculation this arbitra-
riness would not matter, but since the theory is based
on an approximate distribution function, we can expect
variations in ¢ with the choice of the cut-off distance
for pair formation. Smaller distances of about 8 to 10 A
for 2-2 electrolytes in water at 25°C have been pro-
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posed,™ but we find empirically that an even smaller
rg=25.59 A is necessary for the osmotic coefficients to
come close to the HNC, results (Fig. 11). Further re-
duction to about 4.62 A, appears to give results closer to
both ¢, and ¢, in the HNC approximation (Fig. 11), ex-
cept that for this choice of 7z, the osmotic coeffi-
cients fail to show negative deviations from the
limiting law over the same range of concentrations for
which the deviations are found in the HNC theory!

The HNC calculations for 2-2 electrolytes are flawed
by the discrepancy between ¢, and ¢,. Judging by the
general agreement with the Monte Carlo calculations
(Fig. 7) however, we have confidence in the HNC cal-
culations of E**/I for this electrolyte. This function is
compared in Fig. 10 with the qualitatively similar
DHLL+B; approximation for E**/I and with the very
different results from the MS approximation which are
very nearly identical with the HNC values of E=x/I
for 1-1 electrolytes! At low ionic strength, the results
from the optimized mode expansion theory of Ref. 8(c)
are indistinguishable from the curves labeled MSg in
Fig. 10.

We conclude with a brief discussion of the charge

AECX T T T I
T 2-2, gjj=4.24, t=25°C,
8ol 7
€=78.358, dMnE€/dInT = -1.3679
40 .
T
// TSQHLL+B,
~
o ___ ..
- 40L DN N
MSE\\\\
(~HNC I-1) S~
N
I
1
4
JI

Fi1g. 10. Deviations from the Debye-Hiickel limiting law
for the energy and osmotic coefficients of a 2-2 electrolyte ac-
cording to several theories. Results from the optimized mode
expansion are indistinguishable from the curves labeled MSg.
Th& c;tii)ﬁ distance for ion pairing for the curve labeled Bjerrum
is 14.3 4.
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T T L T
2-2, ¢=78.358, 1+25°C, a=424

.

4628 =10
6598 m 1.33q

80 _
78 ~
5 HNC,

~.84.62})
1 1 i L
105 -0 02

Fic. 11. Osmotic coefficient curves derived from Bjerrum
theory for two choices of the cutoff distance for pair formation
(rs, given in parentheses) which give close agreement with the
HNC results. The free ions are treated according to the Debye-
Hiickel theory, with the parameter d=rg.

density around a chosen ion ¢ under different condi-
tions of ionic charge and concentration. The charge
density per unit volume p;(r) at a distance » away from
an ion 7 is given by
pi(r) = 2 cieshii(r), (3.7)
=i
and the total charge sidr in a spherical shell of thick-

ness dr is p;4wr’dr. It is convenient to define the dimen-
sionless function s;* related to s; by

(3.8)
which, in the Debye-Hiickel theory, is given by
(s*)pu=KPare[e*/(14«a) ] (3.9)

and has a maximum at r=1/x. We compare this with
the corresponding s;* evaluated in the HNC approxi-
mation for 1-1, 2-1, 3-1, and 2-2 electrolytes in Figs.
12-14. For unsymmetrical electrolytes, the s;* curves
are labeled + or — according to whether a positive or
negative ion is chosen as the central ion. Since the ions
are of equal size, there is only one s;* function at a given
concentration for symmetrical electrolytes. There is
also only one function (s*)pu at a given «a, for sym-
metrical and unsymmetrical electrolytes, since this is
completely determined by «, ¢, and r.

When «a is small, the HNC s* curves are qualita-
tively similar to those obtained from the Poisson—
Boltzmann equation by Guggenheim,*? even though
the latter does not obey the self-consistency criterion
g+ —=g- 4+ for unsymmetrical electrolytes. Generally
speaking, the discrepancy between (s*)pm and the
HNC s* increases with increasing concentration and
ionic charge. Also, the shapes of the HNC curves and
their relationships to the cruder (s*)pn seem to follow
different patterns for unsymmetrical electrolytes and
symmetrical electrolytes. The onset of oscillations in
s* is particularly noteworthy because of their pre-

s*=—asi/e;,
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ol \ x0=1748,c=32 | |\ 01748, c-.8
At

L
3

x0=.138, ¢=.0025

F16. 12. The distribution of charge around

a central ion 7 for 1-1 and 2-2 electrolytes as
a function of ke in the hypernetted chain and

Debye-Hiickel approximations.
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4 T T T
s* a=4.2R, 78358,
3 t225°C

~.,
.,
-,

F1c. 13. The distribution of charge around
a central ion ¢ for 2-1 and 3-1 electrolytes as
a function of x¢ in the hypernetted chain
and Debye-Hiickel approximations. At xg¢=
0.7569, mild oscillations in s* occur for the
2-1 and 3-1 model electrolytes at distances
away from the central ion that are greater
than those shown in the diagram.

+ xa=535, ¢c=.|15 Xxa=.535, c= |
.2 :/ ‘——_--~ .~~‘ - "’ ———————
L , \ \ L 1 - —
ol 3 + 3 : 5
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5.0 -+ ~ F16. 14. Oscillations in the charge den-
sity for four model electrolytes at the
same ionic concentration of 4M. The
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40 ﬁ H < charges on the ions.
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diction several years ago by Kirkwood and Poirier.®
Estimates of the values of ke at which these occur
are given elsewhere.”® Stillinger and Lovett® have
recently deduced the existence of these oscillations
on the basis of a second moment condition. This is
obeyed exactly by the HNC and MS approximation®
but is not obeyed by the Debye—Hiickel theory ex-
cept in the limit of infinite dilution, i.e., it is obeyed
by the theory which leads to no more than the limiting
laws. We wish to emphasize that since our results are
for the restricted primitive model, the oscillations in
s* cannot be due to differences in the sizes of the hard
spheres.
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APPENDIX: EXCESS THERMODYNAMIC
FUNCTIONS IN THE DHLL+B,
APPROXIMATION

The excess free energy per unit volume in the
DHLL-+B, approximation is given by Eq. (2.8).
The osmotic coefficient ¢, the activity coefficient v
of the solution,” and the excess energy and excess
volume are available from the thermodynamic relations

Ee==9(BF) /a8, Vex=gFex/3 Py,
¢—1=cd(BFx/c)/dc,  lny,=3(BF>)/dc, (Al)

where Pg is the external pressure on the solvent. The
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explicit relations are

Eex d Ine A
— =11 A+ (T i Pi;
= + 20 | 4 L ¥ eaaPs (A2
Vex d Ine s 0
LA A+ (kT iRy, (A3
o [apo] FOTIE S oeks, (A9
5K3 c @
¢—1=— —c Y 2 cic;Sii(x)+ B, (A4)
1927c f=1 j=1
5K3 2 o 0
Inyp=— —— — =X ¥ cic;Sij(x) + B, (AS)
64rc C j=1 ju=1
where
5K3 ¢ 0o ” ,
A=— — (kD)7 3 3 cicieie Si”' (k) —5xS: (k) ],
64~ =1 j=1
(A6)
K o 4
== 57T ,Z-:l }-:1 cicieie;Si (x), (A7)
Sif () =2 [ [exp(—Bus®) explgi)—1]
)
X exp(—«r)ridr, (A8)
S () =2r [ Lexp(—Bus) exp(gi)—1]
0
X exp(—«r)rdr, (A9)
and S;i;(x) is given by Eq. (2.9).
o J 1..*
Pi,-=21r/ —(—B;;Lzexp(—ﬁuij*) exp(g:;)r’dr  (A10)
0
and
w0 auij*
R,-,-=27r/ exp(—Bu.*) exp{qs;)ridr. (Al11)
o 0P,

All of these thermodynamic functions pertain to the
McMillan~Mayer standard states and are applicable
to mixed as well as single electrolytes. We note that

Vex_z: Z CiCjRij _ J lne/an

Eex—3" %" cic;Pyj (149 Ine/d InT]
in which the terms P;; and R;; are zero for hard spheres
of constant size. Since the limiting law excess functions
for the volume and energy are also in the ratio given
in the right hand side of Eq. (A12), the deviations
from the limiting law exhibited by E== are reflected
in sign and magnitude by corresponding deviations in

Ve when the system consists of hard spheres whose di-
ameters are independent of temperature and pressure.
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