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The dynamics of reversible electron transfer reactions in Debye solvents are studied by 
employing two coupled diffusion-reaction equations with the rate constants depending on the 
reaction coordinate. The equations are solved analytically in four limiting cases: fast and slow 
reactions as well as wide and narrow reaction windows. A general solution for the survival 
probabilities is obtained by employing a decoupling approximation similar to the one used by 
Sumi and Marcus [J. Chem. Phys. 84,4896 ( 1986) ] for nonreversible reactions; our solution 
verifies the existence of four limiting cases and also predicts the behavior between these limits. 
Interpolation between long and short time approximations to the general solution, leads to 
survival probabilities with a single exponential time dependence and rate constants ki 
satisfying the relation k/k,! = exp ( - PAGO), where AGO is the standard free energy change 
for the reaction. Multiexponential behavior of the survival probabilities is exhibited when 
higher order terms are included in the evaluation of the general solution, but this deteriorates 
to a single exponential, governed by a first order rate constant, at long times. In the narrow 
reaction window limit the multiexponential solution is exact when both the forward and 
reverse reactions are barrierless, and the behavior at long times is determined by a rate 
constant k = 0.83 r~ ’ where rL is the longitudinal relaxation time. Similar behavior is found 
when the forward reaction alone is barrierless and the barrier for the reverse reaction is 
large (BAG T = 0, BAG : $1)) except that the forward rate constant k, z 7; ’ 
[ 0.6 + (r//3AG : ) “2] - ’ depends on the barrier height for the reverse reaction which has a 
small rate constant. Our solutions reduce to those of Sumi and Marcus when the reverse 
reaction is ignored. They are also compared with numerical solutions to the diffusion reaction 
equations. The extension to non-Debye solvents is briefly discussed. 

I. INTRODUCTION 
Since the pioneering research of Marcus’ and Hush,’ 

the study of electron transfer reactions has been of continu- 
ing interest.“-5 Two limiting cases are usually discussed for 
these reactions: the adiabatic limit, in which the electronic 
coupling is very strong at the intersection of the product and 
reactant potential energy surfaces, leading to a crossover 
from the initial to the final state along a smooth curve, and 
the nonadiabatic limit, for which this coupling is very weak 
leading instead to a crossover shaped like a cusp. The details 
of this classification can be found elsewhere.3*5’“’ 

The current theory’ of adiabatic electron transfer is 
based on the Born-Oppenheimer approximation which sup- 
poses that the motion of the electron can be separated from 
that of the nuclei and that a radiationless electronic transi- 
tion takes place between states of equal energy. The rate 
constant is derived either from the transition state theory’ or 
from Kramers’ theory6*’ or from the theory of mean first 
passage times. 8*9 For nonadiabatic electron transfer reac- 
tions, the transition probability is calculated from the Fermi 
Golden RUle,3(a),10(a),10(b) which leads to a rate constant 
proportional to the electronic coupling matrix element. Uni- 
fied theories which try to cover both adiabatic and nonadia- 
batic limits, have also been proposed.“V’2 

It is generally accepted, since the work of Marcus and 
Hush, ‘v2 that fluctuations of the solvent polarization play an 
essential role in electron transfer reactions. A diffusion equa- 
tion can be used to describe the motion of the solvent polar- 

ization along the reaction coordinate. If the fluctuations of 
the solvent polarization are very fast, the thermal equilibri- 
um population of reactants in the transition state is main- 
tained during the reaction, and transition state theory can be 
used to determine the rate, otherwise Kramer@ theory of 
barrier crossing is more reasonable. If the barrier height in 
Kramers’ theory is chosen to correspond to the activation 
energy, the rate constant obtained differs from that predict- 
ed by the transition state theory only in the preexponential 
factor. 

The dynamic effect of the solvent polarization on elec- 
tron transfer reactions has been discussed by many workers 
over the years.5(a).7.1’-14 A number of experimental results 
have also been reported,‘5-17 which show that the rate con- 
stant for intermolecular electron transfer is inversely pro- 
portional to the longitudinal dielectric relaxation time rL of 
the polar solvent and also depends on the energetics of the 
reaction, while in many intramolecular electron transfer re- 
actions, which are essentially barrierless,‘2’c’ the rate con- 
stant is approximately equal to 7~ ‘. The longitudinal relax- 
ation time is defined by r, = (E, /eo)rD where rD is the 
dielectric relaxation time and E, /e. is the ratio of the high 
frequency dielectric constant to the static dielectric con- 
stant. The dependence of electron transfer rates on a single 
relaxation time is usually characteristic of Debye solvents. 
For this case the general dependency on rt was first shown 
theoretically by Zusman, I3 and found later by Calef and Wo- 
lynes’ who obtained a rate constant approximately equal to 
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0.1 rr ’ which is qualitatively in agreement with experi- 
ments for barrierless reactions but falls short of the observed 
values. 

Prompted by this, Sumi and Marcus” used a diffusion- 
reaction equation to study the dynamic effects of electron 
transfer reactions in which intramolecular vibration of the 
reactants also plays a role in bringing them to the activated 
state. The physical picture given by them is that the reactants 
diffuse through a potential well along a polarization coordi- 
nate x, which connects the reactant and the products, and 
the reaction, which may be activated by vibrational motion, 
takes place anywhere along this coordinate with a rate con- 
stant k(x) dependent on x. For simplicity, the reverse reac- 
tion was neglected. The differential equation for diffusion 
and reaction is similar to the one studied by Agmon and 
Hopfield” in their investigation of the kinetics of CO bind- 
ing to heme in myoglobin and by Bagchi, Fleming, and Ox- 
toby2’ in their analysis of barrierless reactions. A complete 
picture, however, for the electron transfer reaction between 
two states should contain diffusion and reaction in both di- 
rections as pointed out by Nadler and Marcus.2’ If equilibri- 
um is to prevail between the initial and final states, the pres- 
ence of a reverse reaction is essential and the time 
dependence of the survival probabilities will be different 
from those for a reaction in a single direction. Moreover, the 
relation between the equilibrium constant and the rate con- 
stants K = k/k, can be employed to check whether the 
analysis is correct. 

diffusion-reaction picture rather than the chemical kinetic 
representation employed by them. Other aspects of electron 
transfer reactions which have been studied are the solvent 
nuclear tunneling effect on the aqueous ferrous-ferric elec- 
tron transfer reaction. This was also investigated earlier by 
Friedman and Newton,’ and has been studied more recently 
by Bader, Kuharski, and Chandler14 through computer sim- 
ulation. The importance of tunneling corrections have also 
been considered recently by Warshel and Chu4 

Experimental work on solvent controlled electron 
transfer reactions which exhibit a more complex relaxation 
behavior than what is expected of simple Debye solvents is 
well known. Theoretical studies of these systems have been 
carried out independently by Hynes,‘@) Sparpaglione and 
Mukamel,s(c) and Fonseca;24’8’ intramolecular vibrations 
play no part in the activation step of these model electron 
transfer reactions which are assumed to be governed by the 
dynamics of solvent dielectric fluctuations. In the discussion 
section of our paper we indicate very briefly how our results 
for the Sumi-Marcus model can be extended to non-Debye 
solvents. 

In this paper, we carry out a detailed analysis of reversi- 
ble electron transfer reactions which are characterized by a 
single relaxation time and show how the overall survival 
probabilities satisfy the general equations for a two state 
problem. Our work necessarily covers some of the same 
ground as Zusman’3(a) and Sumi and Marcus” which is also 
limited to Debye solvents but extends their work to general 
reversible reactions and provides, at the same time, a link 
between the two approaches. We derive an approximate gen- 
eral solution for these reversible reactions and show how it 
can be used to obtain not only the exact solutions in certain 
limiting cases but also approximate solutions which lie be- 
tween these extremes. An interpolation formula for the sur- 
vival probabilities between long and short times which leads 
to a single exponential decay is discussed and we elucidate 
the nature of multiexponential decays. The dynamical con- 
trol of these reactions and their well-known dependence on 
the longitudinal relaxation time of the solvent is clarified: 
explicit relations are obtained for barrierless reactions in 
which there is essentially no barrier in either direction and 
also for the more realistic example of a large but finite barrier 
in one and almost no barrier in the other direction. 

The outline of the present paper is as follows: In Sec. II 
the two-dimensional potential surface, the forward and re- 
verse activation energies and the coordinate dependent rate 
constants are discussed. The diffusion reaction equations 
and their solutions in four limiting cases are presented in Sec. 
III and the general solutions to the adjoint equations, which 
allow interpolation among and extrapolation beyond these 
four limiting cases, are discussed in Sec. IV. In Sec. V we 
present numerical solutions to the differential equations. 
These are compared with theoretical and experimental re- 
sults in Sec. VI which ends with a brief analysis of the exten- 
sion of our work to non-Debye solvents. Some technical 
aspects are presented in the Appendix. 

II. POTENTIAL SURFACES AND THE RATE 
CONSTANTS 

Our system contains an electron and a macromolecule 
S - - - -S ’ or two molecules with sites Sand S ’ in a polarizable 
environment where one of the sites (S or S ’ ) is a donor and 
the other is an acceptor. The electron can jump between S 
and S’. For this system, parabolic potential wells with two 
reaction coordinates (one a vibrational coordinate and the 
other a polarization coordinate) have been adopted by Sumi 
and Marcus.18 We will first provide a quantum mechanical 
discussion of this. 

Reversible electron transfer reactions are well known; a 
classic example is the Fe + ‘/Fe + 3 electron exchange in wa- 
ter,’ another is the intramolecular charge transfer in p-di- 
methylaminobenzonitrile (DMAB) .22*23 The relative im- 
portance of the “in” vibrational motion of water ligands and 
the reorganization of “outer” solvent in electron transfer 
reactions in Fe + 2/Fe + 3 has already been investigated by 
Tembe, Friedman, and Newton.9’b’ However, their investi- 
gation is different from the one considered here which uses a 

If r and n represent the electronic and the nuclear co- 
ordinates, the Born-Oppenheimer approximation leads to 
the following Schrodinger equations for the electronic and 
nuclear eigenstates of the reactant and the product 

H,,e14,(r,n) = E, b&L (r,n), (2.la) 
HaA2 (n) = E,+a (n), (2.lb) 

where Ha,,, and Ha are the electronic and nuclear Hamilto- 
nians, respectively, of a = 1,2 (reactant or product), while 
ea and E, are the corresponding electronic and total ener- 
gies for state a. Let n = (q,, ,qs,, ) where qv,a are the ligand 
vibrational coordinates of a and q,,, are the coordinates of 
the surrounding solvent molecules. If we consider the vibra- 

J. Chem. Phys., Vol. 95, No. 5,i September 1991 
Downloaded 05 Jun 2004 to 130.111.64.68. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Zhu and J. C. Rasaiah: Reversible electron transfer reactions 3327 

tional motion of cr to be harmonic, the Hamiltonian H, can 
be written as 

Ha =mid -‘a’/ad,, i-pu,@:d.,/2 

+ cz (4) + K, (2.2) 
where pu, and o, are the reduced mass and vibrational fre- 
quency, respectively, H, is the contribution to the Hamilto- 
nian from the surrounding medium, and fi is Planck’s con- 
stant divided by 2~. Unfortunately, the Schrodinger 
equation for the many particle system cannot be solved. If we 
expand E, (q) about the equilibrium position3’“‘V24’b’ the 
leading terms in the potential energy operator V, corre- 
sponding to H, are given by 

v, = (Pa4/2) (4” - &a )’ 

+ (27r/c) jPor(r> - P0,,,,(r)12dr +J,, (2.3) 
J 

where Rn and P”,,,, are the equilibrium values of the vibra- 
tional coordinate and the orientation polarization of the sol- 
vent medium around Q, respectively, and 

C=E -lAE-l 

J, =iAd,:, : 

(2.4a) 

(w&/W&d2 

+ (297-/c) IP,,,,(r) 12dr. J (2.4b) 

The potential given in Eq. (2.3) is clearly parabolic. By shift- 
ing the origin and defining q = qu - qz,, we have 
v, (4,x) = aq2/2 + x2/2, (2Sa) 
V,(q,x) = a(q - q. 12/2 + (x - x0 12/2 + AGO, (2Sb) 
where q. = qt,2 - qz,, , the reaction coordinate x is defined 
by 

x2/2 = (277/c) J JP,,(r) - PY,O,(r) 12dr (2.6a) 

and 

x:/2 = (27r/c) J (P:,,,(r) - PY,o,(r)(2dr. (2.6b) 

AGO = J2 - J, represents the reaction energy and a = pami 
is assumed to be the same for a = 1 or 2. The quantities xg/2 
and a&/2 are the solvent reorganization energy 2, and in- 
tramolecular reorganization energy R,, respectively. 

Equations (2Sa) and (2Sb) are the potentials used by 
Sumi and Marcus. I8 It is seen from Eq. (2.6) that the reac- 
tion coordinate x, which is a scalar, is proportional to a cer- 
tain integral of the orientation polarization of the solvent. 
Since the dielectric relaxation of the solvent has a diffusive 
nature, the relaxation of the polarization coordinate x is 
much slower than that of the vibrational coordinate q. Dur- 
ing the time an electron transfers between donor and accep- 
tor, the polarization coordinate x may not be at equilibrium, 
but the vibrational coordinate q may be assumed to be so. In 
this case, as argued by Sumi and Marcus, the reaction can be 
described by reaction-diffusion equations, in which the po- 
larization coordinate x diffuses in potential wells given by 
the second terms of Eqs. (2.5)) while at each x, the reaction 

occurs with rate constants k,(x) and k2(x), which are the 
rates averaged over the vibrational coordinate q. 

In the transition state V, (q,x) = V, (q,x) and one finds 
from Eq. (2.5) that in this state (or states) 

xx, +aqq, =A + AGO, (2.7) 
where 

A=Ao+R,. (2.8) 
The forward and reverse activation energies at each x are 
then given by 

AGT(x) = (1/2)(A,/&)(x -x&~, 
AG F(x) = ( l/2) (/2,//l, ) (x - x2C )2, 

with 

(2.9a) 
(2.9b) 

X lc = (A+ AG”)/(Wo)“2, (2.10a) 
X 2c = (A + AGO - W,)/(2;10)“2. (2.1Ob) 

The forward and reverse rate constants at each x are defined 
by’* 

k,(x) = Ye exp[ -PAGy(x)] i= 1,2, (2.11) 
where p = l/k, T and 

vq = k, [ 2nll,/(j3ilo)] - 1’2 
in which k, is an independent constant. 

(2.12) 

Ill. DIFFUSION-REACTION EQUATIONS AND THEIR 
LIMITING SOLUTIONS 

If we use P, (x,t) and P2 (XJ) to express the probabilities 
for the reactants and the products to have a particular value 
of x at time t, the diffusion reaction equations can be written 
as’3,2’ 

dP,/dt = [L, - k,(x) 1 P, + k,(x)Pz, 
ap,/at= [L,-k,(x) lP,fk,(x)P,, 

where L, and L, are operators defined by 

(3.la) 
(3.lb) 

D 6 d&(x) 
L, =D$+-- - [ 1 k,T ax dx 

i = 1,2, (3.2a) 

in which D is the diffusion constant, and V,(x) and V2(x> 
are given by the second terms in Eqs. (2.5), 

V,(x) =x2/2, (3.2b) 
V2(x) = (x - ~,)~/2 + AGO. (3.2~) 

The operator Li has the form of a Fokker-Planck operator 
when the potential Vi is parabolic. The initial conditions for 
the probability distribution of the reactants and the products 
can be quite different in different experimental situations. 
One choice is the thermal equilibrium distribution as the 
initial condition for the reactant, 

P,(x,O) = exp[ -W,(x)1 /J exp[ -PV,Cx>ldx, 
(3.3a) 

P2(x,0) = 0. (3.3b) 
The survival probabilities, which are the quantities directly 
relevant to experiments, are defined by 

J 
* Q,(t) = P,kt)dx, (3.4a) 
--m 
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m Qz(t) = 
s 

f',(w)& (3.4b) 

with the initial conditions Q, (0) = 1, Q2 (0) = 0, and Q, (t) 
+ Q2(t) = 1 which should be satisfied by the solutions of 

Eq. (3.1). If the reaction terms are neglected in Eq. (3.1) 
and the motion of P, (x,0 and P2(x,t) are still governed by 
V,(x) and V2(x), it is easily shown” that the average value 
of x decays exponentially, 

(X)i = Jm XPi (x,t)dx 

= <i)Tm,i exp( - t /rL ) i= 1,2, (3.5) 
where (x)~~,~ is the initial value and rr. is the longitudinal 
dielectric relaxation time of the Debye solvent which is relat- 
ed to the diffusion coefficient by5(a),18 

k, = 
s 

ki (x)p~(x)dx 

= 
s 

ki(x)exp[ -PV,(x)]dx/ 

s exp[ -BV;(x)]dx i= 1,2. (3.12) 

TL -’ =flD. (3.6) 
Therefore, when the reaction does not occur, rL serves as the 
time scale in which P, (x,t) approaches its equilibrium distri- 
bution in the potential well V, (x). 

The coupled equations (3.1) have different limiting so- 
lutions. For example, when the diffusion terms are extreme- 
ly small, we have the nond@Son limit and when the reac- 
tion is very slow, we have the slow reaction limit. In addition 
there are the wide and narrow reaction window limits. We 
will now discuss these limits as analytic solutions to ~qs. 
(3.1); the corresponding limits for a single reaction have 
already been treated by Sumi and Marcus. I8 

In this way, the problem is reduced to finding the solution of 
the detailed balance equations (3.11) for just two states. 
Taking Laplace transforms and solving 

Q,(s) = 11s - Q,(s), (3.13a) 
Qz(s) = k,,/[e + k,, + k,,)], (3.13b) 

which can be inverted to give 
Q,(t) = 1 - Q2(t), (3.14a) 

Qz(t) = ,,.:, [l ~e-‘~l’+u’]~ (3.14b) 
2e 

A. The slow reaction limit: [k,(x) +TL’ ] 
When the reactions, which disturb the thermal equilib- 

rium distribution ofx take place very slowly compared to the 
rate of the polarization fluctuations of the solvent, we can 
assume that the thermal equilibrium distribution of x is al- 
ways maintained. The solution to the diffusion-reaction 
equations (3. la) and (3. lb) can then be written as 

pi CxPt) =A (t)p~4(XPt). (3.7) 
Substitution in Eq. (3.1) leads to 

+F(x,t)/& = L@(x,t) = 0 i = 1,2, (3.8) 

p?Yx,tw,(w~t = - k,(x)p~(x,t)f,(t) 

This shows that the time dependencies of the survival proba- 
bilities are single exponentials and equilibrium is reached 
eventually at infinite time. Making use of Eqs. (2.11) and 
(2.5) and carrying out the integration in Eq. (3.12), we have 

k,, = Yexp[ -PC/z + AG0)2/4;1 1, (3.15a) 
k,, = Yexp[ -/3(n + AG0)2/4;1 +PAG’], (3.15b) 

with the preexponential factor 
v = VP (A,/;2y2. (3.16) 

It is seen that the rate constants do not depend on rt because 
the thermal equilibrium distribution is maintained during 
the reaction. They also satisfy the relation klJkze 
= K = exp( - BAG O), as required by the principle of chem- 

ical equilibrium. The preexponential factor’8 

v = (Zvj,Aj,,/A ) “2 (3.17a) 
for adiabatic reactions, and 

v = (J2//z) (T7fl/A)“2 (3.17b) 
for a nonadiabatic reaction, where v~,~ and ,lj,, are the jth 
vibrational frequency and thejth vibrational contribution to 
/zi, respectively, and J is the electronic coupling matrix ele- 
ment. 

+ k,(x)p;gLw)f2(t), (3.9a) 
p;g(w)Jh(t)/Jt = - k,(x)&Yx,t)f,(t) 

+ k,(x)p~(x,t)f,(t). (3.9b) 
The solution of Eq. (3.8) is 

P?(X) = exp[ -PV,(x)]/ 

f 
exp[ -PVi(x)]dx i= 1,2. (3.10) 

Integrating Eqs. (3.9) and (3.7) over x, and noting that 
A(t) = Q,(t) wehave 

B. The nondiff usion limit: [k,(x) g q1 ] 

In this limit, the reactions are so fast that the thermal 
equilibrium distribution of the x is not restored by diffusion 
during the reaction. The diffusive process can now be ne- 
glected and Eqs. (3.1) and (3.2) reduce to 

dP,/dt = - k, (x)P, + k2(x)P2, (3.18a) 
dp,/i?t = - k,(x)P, + k,(x)P,, (3.18b) 

which have the solutions 
Pl (W) = Pl (x,0) - P2(x,t), (3.19a) 

dQ,(Wdt = - &Q,(t) + kzsQ2(t), (3.11a) 
dQ,(O/dt = - k,,Q,(t) + k,,Q,W, (3.11b) 

where k, is the thermal equilibrium rate constant defined by 

P2kf) = P, (x,0) 
I 

k,(x) 
k,(x) + k,(x) 

X[l /tw+k,wlq), (3.19b) 
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forP,(&O), Gl(X(X,,t) and G,(x-x,(x, -x,,t). Letting 
x = x, in Eqs. (3.24) one has 

where P, (x,0) is the initial distribution. The survival proba- 
bilities Q,(t) and Q2( t), found by integrating Eqs. (3.19), 
will show multiexponential decay. 

[~I(~,~~) - P2(w)] 

C. Plarrow reaction window limit: (lcq -g&,) 

In contrast to the preceding case, if the width of ki (x) is 
very narrow, the Gaussian distribution can be approximated 
by a delta function 

k(x) = k,(x) = k,(x) = k,&x -xc), (3.20) 
where k, is a constant [see Eq. (2.12) 1. Equations (2.10) 
then reduce to 

= [P,(x,,O)/s]/{l + ~,[G,(x,Ix,,s) 
+ ‘32(x, - xo Ix, - ~0,s) ] 1, 

which gives 

(3.27~) 

x, = Xlc = X& = (A, + AG”V(W,)“2 (3.21) 
at which point the vibrational coordinate q = 0. In this case, 
Eq. (2.9) is meaningless and the activation energies for the 
forward and reverse reactions have to be reformulated as 
AGT =x:/2 = (R, + AG0)2/(4/20), (3.22a) 
AG: = (xc - ~,)~/2 = (A, - AG”)‘/(4ilo). (3.22b) 
The reaction-diffusion equations (3.1) reduce to 

aP,/dt = - k,S(x - x,) (P, - P2) + LIP,, (3.23a) 
ap,/at = k,S(x - x,) (PI - P,) + L,P,, (3.23b) 

which are similar to the equations derived by Zusman’3(a) 
for describing the electron transfer reactions from Bursch- 
tein’s theory of sudden modulation; our analysis, which fol- 
lows, is similar to his. Taking Laplace transforms, the solu- 
tions of Eq. (3.23) can be written as 

Q2(s) = kof’,(X,,o)/W[ 1 i- koG,(xc(xc,s) 

+ koG (xc - xo lx, - xc, 9s) ] I. (3.27d) 

Equation (3.27) is exact for this limit but we recall that it 
applies only to systems with a single relaxation time, i.e., a 
Debye solvent. 

Ifone could carry out the integral in Eqs. (3.26) analyti- 
cally, the problem, in this limit for a Debye solvent would be 
solved completely. This is done in Sec. IV; here instead we 
discuss three simpler approximations for the Green’s func- 
tions given in Eq. (3.26). 

1. Long and short time approximations 

Analytical results can be obtained at long and short 
times. When t%rL,exp( - t /rL) ~0, and Eq. (3.26) gives 

G,(x,lx,,~)--P,(x,,0)/~; 
P,(w) = P, (x,0)/s - k,G, (xIx,,s) 

x [~,(X,,~) - P2(x,,s)], 
P&v) = koG,(x -x0 Ix, - xo,s) 

(3.24a) 

x [PI(W) - P2(w)], (3.24b) 
where P, (x,0) is the initial condition and the Green’s func- 
tions G, (xjx,,~) and G2(x - x0 Ix, - xo,s) are the Laplace 
transforms of the solutions to the Fokker-Planck equations 

aG,(xlx,,t)/dt = L,G,(xlx,,t), (3.25a) 
aG2(x - xo lx, - xo,t)/at = &G,(X -X0(X, - xo,t), 

G2(x, - x0 Ix, - xo,s) z-P, (x, - x0,0)/s. (3.28a) 
When t<rL,exp( - t/rL)zl - t/rL, then Eq. (3.26) 
gives 

Gl(x,/x,,s) zrL/(x, 1; 

(3.25b) 
with the initial conditions G, (xJx,,O) = S(x - x,) and 
G~(x - ~0 IX, - x0,0) = S(X - x,). Solving these equa- 
tions it follows that 

s 

m 
G, (xIx,,s) = e - ” [ 2&, T( 1 - e - zr’r~] - ~2 

0 

G(x, - ~0 IX, -x0+) zrL/Ix, - x0 1. (3.28b) 
Interpolating between these limits, G, (xIx,,s) and 
G2(xc - x0 Ix, - xo,s) can be approximated asl3 

G,(x,~x,,s) ~p,(x,,O)/s + rL/(x,l, (3.28~) 

G,(x, - x0 Ix, - ~0,s) zP2(x, - x,,o)/s 

+rL/Ix, -x01. (3.28d) 
Substituting these into Eq. (3.27) and using Eq. (3.3a) we 
have 

Q,(s) = l/s - Q,(s), (3.29a) 
Qz(s) = k,/[s(s + k, + k,)], (3.29b) 

where p(x - x,e-f’rL)2 
2( 1 - e-2”TL) I 

dt (3.26) 

and G2(x - x0 Ix, - xo,s> has the same form as G,(x~x,,s) 
with x - x0 and x, - x0 replacing x and x, in Eq. (3.26). 
Integrating Eq. (3.24) with respect to x, we have for the 
Laplace transforms of the survival probabilities Qi ( t), 

Q,(s) =s-’ - Q2(s), (3.27a) 
Q20) =s-‘ko[P,(x,,d -Pz(x,,s)]. (3.27b) 

In deriving this we have used the normalization conditions 

k, =A, exp[ --PC/z,+ AG0)2/4/20], 
k2 = A, exp[ - /3(;1, + AG0)2/4ilo + PAGO], 
and A, is defined by 

A, = ko(2rk,T) -,1/2 

(3.30a) 
(3.30b) 

X[l +korL(l/Ix,( + l/(x, -x,1)]-‘. (3.31) 
Equation (3.29) has the same form as Eq. (3.13 ) . It follows 
that the time dependence of the survival probabilities is 
again the simple exponential given in Eq. (3.14) with k,, 
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and k,, replaced by k, and k,. It is seen that k/k, = K 
= exp ( - /3AG ‘) is satisfied in the present approximation. 

When  the second term in the denominator is much bigger 
than unity, Eq. (3.31b) can be  approximated as 

A,z~~‘(2?~k,79 -“2(~x,~~xc -xol)/ 

(I&l + I& -x01) (3.32a) 
and  for AGO = 0, X, = (2,/2) “* 

A * =: (2rL ) - * (&/47r) I’*. (3.32b) 
Here A, is independent of the strength of the delta function 
k, and is inversely proportional to the solvent dielectric re- 
laxation time  r=. If&%, is in the range r to 4~, Eqs. (3.32b) 
and  (3.30) gives k, = k,zO.llrF i to 0.02~~ ‘, which 
shows the rate constants cannot reach the value r; ’ if there 
is a  barrier present between the reactant and  product poten- 
tial surfaces. Q*(s) =$--$ 

X/( in; l> s+ (2nY 1)/r= 9  (3*36) 

where the first term comes from expansion about s = 0, and  
the second term is from the expansion about 
s = - (2n + l)/rL for n  = 0,1,2... . The  derivative off(s) 
at s = - (2n + 1  )/rL has the general  form” 

f’[-ch+l)/TL]= -( %-ri/2) [ (2?2)!!]2/(2n + l)!. 
(3.37) 

Substitution of this in Eq. (3.37) leads to 

2. Barrierless reaction (pAe 4 I, pAG$ .# 7) 
This occurs when the reaction energy AGO and solvent 

reorganization energy R, are both small. For this case, analy- 
tical results can be  obtained for the survival probabilities. 

Since BAG:<l, BAG:41, G ,(x,Ix,,s) and  
G ,(x, - x0 Ix, - xo,s) in Eq. (3.26) can be  approximated 
as 
G , (xc IxA 

= G ,(x, - xoIxc - x,,s) 

=: (B /2%-) - “2  
I -[I -exp( -2t/r=)] -112 

Xexp( -s& = (fl/2T)*nf(s), (3.33) 

with 

fls) = nzo [ (:2n ;$ s + in/, ’ (3.34) 
L 

where we have expanded [ 1  - exp ( - 2t /rL ) ] - 1’2  in an  
infinite series. Combining Eqs. (3.33) and  (3.27) we have 

Q,(s) = I/s - Q*(s), 

Qz(s) = 
k, t/3 /27~) “* 

s’{ 1 + 2ko W /277) “‘fcs) 1 

1 1  
“zszfo 

(3.35a) 

(3.35b) 

XT (2n)! 1  
n=O (2n + 1) [ (2n)!!]2 s + (2n + 1)/7L ’ 

(3.38) 
which gives the inverse Laplace transform 

1  ‘2  (2n)! 
Q2(r’=T 7T  n=O (2n+ 1)[(2n>!!12 

- c2n + l)f/T‘ 

= -Larccos(e-L’r’). 
9-r 

(3.39) 

The  inverse Laplace transform of Eq. (3.35a) is then 
Q ,(f) = 1  - (l/n)arccos[exp( - t/rL)]. (3.40) 

However, if one  neglects the reverse reaction, which corre- 
sponds to BA G  T  Q  1, BAG : ) 1  and  is discussed later in de- 
tail, a  factor (l/2) will be  removed from Eqs. (3.35) and  
(3.38) and  instead of Eq. (3.40), the inverse Laplace trans- 
form of Eq. (3.35a) produces 

Q ,(f) = (2/p)arcsin[exp( - t/rL)] (3.41) 
and  Q2  ( t) = 0  which is Sumi and  Marcus’ result. I8 The  dif- 
ference between the two is determined by whether the re- 
verse reaction is neglected or not. When  t-+ CO, Eqs. (3.40) 
and  (3.41) predict the values of l/2 and  zero, respectively, 
for Q,(t). 

From the above equations it is clear that the time  depen-  
dence of the survival probabilities are mu ltiexponential 
which makes it difficult to identify overall rate constants k, 
and k, in either direction. But if the time  is fairly long com- 
pared to rL, which corresponds to small values of s, Eq. 
(3.34) can be  approximated as 

Here we have used P, (x, ,0) = (j3 /2rr) 1’2  for the barrierless 
reaction. In going from Eq. (3.35b) to (3.35~) the approxi- 
mation has been made  that the second term in the denomina- 
tor” is much bigger than one, which is true if 
koTL (B/27r) I’*) 1. It is seen that the poles of Q ,(s) are at 
s=Oands= - (2n+ 1)/rLforn=0,1,2...whicharealso 
the poles off(s). *’ From the general  partial fraction expan- 
sion of the inverse Laplace transform about these poles, 
Q ,(s) can be  written as 

f(s) A+rLfi, (3.42) 
S 

with 

fn = nji, r(:2,1’!:]* 2. (3.43) 

Combining Eq. (3.42) with Eq. (3.33) leads to 
G ,(x,Ix,JS) = ‘Xx, -xolxc -xo,s) 

= (/3/2?r)“*[ l/s + rL f 
m i 

, 
which with Eq. (3.27) gives 

(3.44) 
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[ww) - P*(x,,s)] 

= (B/2n)“*[s + ko(/?/2n)“*( 1 -t srJa)]. (3.45) 
The solution of E!q. (3.27) then reduces to 
Q ,(s) =s-’ - Q,(s), where 

Q,(s) = k  
s(s + 2k) ’ 

with 

(3.46) 

k= 
k, (/? /27r) “* 

1 + 2korL f, (P/27r)“*’ 
Now the inverse Laplace transforms are 

(3.47). the rate constant for a  barrierless forward reaction changes 
with the height of the activation barrier for the reverse reac- 
tion. W e  will compare this with the experimental results in 
the Sec. V. 

Q ,(t) = 1  - Q ,(r), (3.48a) 
Q,(t) = [ 1  - expt - 2kt) l/2, (3.48b) 

which show single exponential behavior in this long time  
approximation and  identifies k = k, = k, in Eq. (3.47) as a  
first order rate constant. If k, r, (b /277) I’*) 1, we have 

k=k , = k2 = (2rL f, I- ‘, (3.49) 
which is independent of the strength of the delta function k, 
and  is inversely proportional to the solvent relaxation time  
rt. The  series in Eq. (3.43) converges slowly but, carrying 
out the summation to as many terms as necessary (about 
forty), we findf, ~0.6, which leads to kzO.833rF ‘. This is 
close to many experimentally observed values of k z rL ‘. 

3. Barrierless reaction (pdG: Q  1, /34G,*& 1) 
If the reaction free energy AGO and the solvent reorgani- 

zation energy lo are not small, but the intersection of the two 
potential wells is near  the m inimum for the reactant, then 
the activation energy for the forward reaction 
(/3AG T  = /3x:/2 ~0) is small but it is large for the reverse 
reaction. One  lim iting approximation is, of course, to neglect 
the reverse reaction when G ,(x, - x0 Ix, - x0 ,s) --,O. As 
discussed above, the survival probability Q’(t) will then be  
given by Eq. (3.41) showing a  mu ltiexponential decay. 
However, if the reverse reaction cannot be  neglected, one  can 
use Eq. (3.33) which is exact for G , (x, Jx,,s) and  the inter- 
polation formula given in Eq. (3.28d) for 
‘Wxc -xolxc - xo,s), which would lead to Eq. (3.27). 
However, a  simpler expression is found if instead we use the 
approximation Eq. (3.44) for G’(x,(x,,s) but retain Eq. 
(3.28d) for G ,(x, -xolxc -xo,s), when Eq. (3.27) re- 
duces to 

Q ,(s) = l/s - Q,(s), (3.50a) 
02(s) =koy-‘P,(x,)/{S2+skoy-‘[(P/2d”* 

+p,(x, -x0,]), (3.5Ob) 
where 
y= 1  + r,k,(p/2n)“*[f, + (@AG:)“*]. (3.51) 

f, is given by Eq. (3.43) and  AG:zxi/2, while P,(q) and 
PI (xc - x0 ) depend on  the initial conditions. Choosing 
these to be  the thermal equil ibrium distribution of Eq. 
(3.3a), we have P’(x,) = (p/27r)“* and  P,(x, -x0) 
= (/3 /2n) 1’2 exp( - Bxi/2), Taking the inverse Laplace 
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transforms, the survival probabilities are those displayed in 
Eq. (3.14) with the rate constants k,, and k,, replaced by 

k, = k, (B/27~)“*/y, (3.52a) 
k, = k. (f3 /271-) “* exp ( - fixi /2 ) /y, (3.52b) 

respectively. If rL k, (/3/27r) “*) 1  the first term of Eq. 
(3.5 1) can be  neglected and  we have 

k ,=:r;‘[f, + (7r/BAG:)“*] -‘, (3.53) 
where we have found earlier that f, -0.6. This shows how 

D. The wide reaction window limit: (h4 g ha) 

Here the distribution of ki (x) [see Eqs. (2.11) and  
(2.9)] is Gaussian, with a  width (k, T il,//z,)“*. When  
A2, )R,, the width of this distribution, which is the reaction 
window, is much wider than the width (k, T) “* of the ther- 
ma l equil ibrium distribution of x. In this case, as suggested 
by Sumi and  Marcus,” one  can approximate ki (x) as a  con- 
stant which may be  taken as k, by letting/z = Aq and v = yq. 
k, = vq exp[ -p(A, + AG”)*/4il,], (3.54a) 
k, = vq exp[ -/?(A, + AG”)*/4;1, +flAG’]. (3.54b) 
Since the reactions span the x coordinate so widely, the shift 
x0 = $& in the product potential well becomes relatively 
unimportant and  can be  neglected. Therefore the diffusion 
operators are essentially equal  to each other L, z L,, and the 
solutions to the reaction diffusion equat ion can then be  writ- 
ten as the product of the probabilities for reaction and  diffu- 
sion, 

Pi(X,l) =jy(Q#“‘(x,t). 

Substitution in Eq. ( 3.1) leads to 
dp;“f(x,t)/i?t = L’pfqx,t) 

and 

(3.55) 

(3.56) 

iJf,(t>/Jt= - k,f,(G + k,.&(t), (3.57a) 
df,(WJr = - k,f,(Q + k,f,(O, (3.57b) 

with the initial condit ions f, (0) = 1, f,( 0) = 0  and  
p;lif(x,O) = S(x). Since $p;“‘(x,t) dx = 1, the survival prob- 
ability Q i (t) is justA (t) and  is given by Eq. (3.14) with k, 
replaced by ki. 

So far we have solved the coupled reaction-diffusion 
equations (3.1) separately in different lim iting conditions. 
As pointed by Sumi and  Marcus,18 for the case of a  single 
reaction, a  theory which encompasses the four lim iting 
cases, can be  set up  by considering the adjoint equation.‘8P” 
In the following section, we discuss this for reversible elec- 
tron transfer reactions. 

IV. THE ADJOINT DIFFUSION-REACTION EQUATIONS 
AND APPROXIMATE GENERAL SOLUTIONS 

TO find a  general  solution we first transform the diffu- 
sion reaction equat ion (3.1) into an  adjoint form. Following 
Zusman13 and Sumi and  Marcus,18 we define 
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Pi (XJ) = gj (x)qj (x,t) i = 1,2, (4.1) 
with gi (x) related to the thermal equilibrium distribution 

gi(x) = [Py’(x)]“* = k,(x)lA ;’ 
= exp[ -Pvi(x)/2]/ 

J exp[ -BK(x)/2]dx i= 1,2. (4.2) 

Substituting Eqs. (4.1) and (4.2) into Eq. (3.1) leads to the 
adjoint equations 

X 1 
1 -A ,-‘k;A,‘k; 

lflcx)>t (4.12a) 

Q,(s) = WW-‘k;A -k,lA v;Cx)> 
1 2 2 elk, 1 

= (g,(x)IA;‘k;A ,-’ 
%?,(WV~~ = - [H, + k,(x)]q,(x,t) 

+ k 1 (X)q2(x,r), (4.3a) 
%CW)/Jt = - [Hz + k2(x)]q,(x,t) 

+ k ; (x)q, w>, 
where 

(4.3b) 

Hi= -D$+y[$(zy-z] j= 1,~ 

(4.4) 
is similar to the Hamiltonian operator for a harmonic oscil- 
lator with the potential energy given in Eq. (3.2). The eigen- 
values are 

E, = nrr’ n = 0,1,2 ,... , (4.5) 
and the eigenfunctions are given in the Appendix [Eq. 
(Al ) 1. The lowest order eigenfunction gi (x) satisfies 

Higi(x) = 0 i= I,2 (4.6) 
k ; (x) and k $ (x), which appear in Eq. (4.3), are defined by 

k ; 0) = k, (xk, (x)/g,(x), (4.7a) 
k; (xl = k,(xMx>/g,(xL (4.7b) 

with k,(x) and k*(x) given in Eq. (2.11). The survival pro- 
babilities, defined in Eq. (3.4), turn out to be 

Qjtt) = 8i(x)qj(x7t)dx= (gj(qi(t)) i= 172 J (4.8) 

and the initial conditions can be written as 
41 (x,0) =.A (x>, (4.9a) 
42(-M) = 0, (4.9b) 

or 

Q,(O) = J ~,(x,O)dx = (g,v;) = 1, (4.9’2) 

Q*(O) = 0. (4.9d) 
Defining 

Ai =s+H, +ki(x) i= 1,2 (4.10) 
the Laplace transform solution of E!q. (4.3), with the initial 
condition (4.9), can be written as 

X 1 
1 -A,-‘k;A,‘k; 

lf-lw. (4.12b) 

The analytic solutions to these equations cannot be obtained 
without the introduction of approximations. We discuss 
these approximations for a single reaction before consider- 
ing reversible reactions. 

When the reverse reaction is ignored [i.e., k,(x) = 01, 
which is the case studied by Sumi and Marcus, Eqs. (4.1 la) 
and (4.12a) reduce to 

q, (w) = A ; ‘4, (x,0), (4.13a) 

Q,(w) = k,lA ;‘v;>. (4.13b) 
This also cannot be solved exactly. Sumi and Marcus” intro- 
duced a decoupling approximation which is equivalent to 
representing the unit operator by 

l==k le%,%lk,, 
where 

(4.14) 

k,, = (g, (xl Ik, 0) lg, 6) > (4.15) 
is the thermal equilibrium rate constant given in Eqs. (3.15). 
It follows from Eq. (4.15) that Eq. (4.14) is exact when the 
expectation value of operator k ,; ‘(g,) (g, I k, is computed in 
the state Ig,). In general, however, it is an approximation. 
Introducing Eq. (4.14) after k, = k,(x) in the operator 
identity 

A,-‘= (s+H,)-l[l -k,A,-‘1, 
we have 

(4.16) 

A~~~(~+H~)-~[1-k~~k~(g,)(g~~k~A~~]. (4.17) 
Operating with this on (g, Jk, we find that 

kh=G’=[~ +a,,(~)] -‘(g,lk,(~+H,)-‘, (4.18) 
where the scalar 

a,,(~)=k~,‘(g,lk,(~+H,)-‘k,Ig,). (4.19) 
Substitution of Eq. (4.18) in Eq. (4.17) leads to an approxi- 
mate representation of the operator A ,- ‘, 

A,’ z(s+H,)-‘11 - [l-t- a,, (s)] - ‘k, (s + H, I- ‘I. 
(4.20) 

q,(w) 1 = 
A -k’A -,k’ 

4, (x,0), 
1 2 2 I 

q*(x,s) = A 1 ‘k ; 1 
A,-k;,&-‘k;q’(X90)* (4.11b) 

Then from Eq. (4.8) we have for the Laplace transforms of 
the survival probabilities 

The advantage of this is that it contains the operator 
(s + H,) - ’ instead of [s + H, + k,(x) J - * which delines 
A ,- ‘. This makes it possible to use the properties of the Her- 
mitian operator H, in determining the inverse operators. For 
example, if (s + H,) - ’ operates on an eigenfunction 
u,,, (x) of H,, we have 

(~+~*)-‘I~n,,(X))=(~+En)-112L,**(X)), (4.21) 
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wherethee, isgiveninEq. (4.5).Sincegl(x) = [u,,,(x)) is 
the lowest order eigenfunction, 
(s+H’)-‘jg’(x)) =s-‘]g,(x)) while if /u,,(x)) is re- 
placed by an arbitrary functionf, = f, (x), which can be ex- 
panded in the set of eigenfunctions ] u,, (x) ), we see that 

b+H,)-‘LfiW = C (s+E,)-~(u~,,V;>IU~,,). 
n=O 

(4.22a) 
It follows immediately that 

(g&s+ H,) - ‘k,(g,) = 2 (s + E,) -‘bn,, Ik&,) 
II=0 

x (g,(u,, ) = k,es- ‘. (4.22b) 

Likewise a,, (s), defined in Eq. (4.19)) can be written as 

=,I (~1 = k 1,’ 2 (s+ en) -‘h,,, Ik,Ig,)(g,Ik,l~,~,) 
#I=0 

(4.23a) 

=k,,s-‘+k,?C (~+~,)-‘l(~n,,(k~(g,)l*, 
II=’ 

(4.23b) 
where E, = n/r=. Taking the inverse Laplace transform 

a,(t) = k,, + k 1,’ C c,,, exp( - ~,f), (4.24) 
n=l 

where c,, = [(u,,, lkIlgl)(*. Further discussion of this is 
given in Appendix A. 

Equation (4.20) is simpler than the approximations de- 
rived by Sumi and Marcus although they also used Eq. 
(4.14). All of their results can also be derived from Eq. 
(4.20). Using this in the expression for the survival probabil- 
ity we find that 

Q,(s) =s-‘- [s(l + a,,)]-‘(g,lk,(~+H,)-‘(fi) 
(4.25a) 

which is our main result when the initial state is V;). If this is 
taken as the thermal equilibrium conditionf, = g, 

Q,(s) = k,lA ,-‘Id 
= l/s- k,,/[?(l i-a,, I]. (4.25b) 

This is our approximate general solution for a single reaction 
with these initial conditions which was also obtained by 
Sumi and Marcus in the special case of a narrow reaction 
window limit; the general solution given by them in Eq. 
(5.24) of Ref. 18 contains an additional operator h which 
makes the subsequent discussion more involved. It is easy to 
show that Eq. (4.25b) generates the four limiting cases dis- 
cussed by Sumi and Marcus. For example, in the slow reac- 
tion limit, a,, ZS- ‘k,,, and Eq. (4.25b) leads to 

I 

Q, (s)=: (s + k,, I- ‘. (4.26) 
This leads to a single exponential decay 
Q1 (r) =exp( - k,,t). In the narrow reaction window limit, 
Eq. (4.25b) is (E3) of Sumi and Marcus’ paper. We omit the 
derivations of the other two limiting cases which lead to the 
same form since they are quite simple but we consider them 
all in our discussion of reversible electron transfer reactions 
which follows. 

In the reversible reaction case, the decoupling approxi- 
mation Eq. (4.14) and (4.20a) are generalized and extended 
to 

l-(giJgj)kj~‘lgi)(giIkj ij= 122 (4.27) 
and 

Ai-‘~:<s+Hi)-‘{l-[l+a,,(S)]-’ 

xk,(s+HJ-‘} i= 1,2, 
respectively, where 

(4.28) 

U,(S) =k,‘(giIki(S+Hi)-‘ki(gi) i= 192 

and 
(4.29) 

k, = (gilkilgi) i= 1,2. (4.30) 
Equation (4.27) is exact if we evaluate (gi 11 \gj) although 
generally it is an approximation. We will discuss the simple 
case of letting f, = g, when the use of the decoupling ap- 
proximation in Eq. (4.12) leads to 

Q,@)=‘g,lA ~‘lg,)k,‘k,k,I~ -A 
1 -Ik,A 

1 
-,k, lg,> 

2 2 1 

= WA ?ld 
1 

x 1 -k,,‘(g,k,(A,-‘k;A;‘k;Ig,)’ 

Q,(s) = (g,lA z- ‘k ;A ,- ‘lg,)k I, ’ 

(4.31a) 

= 

x (g,k, I 1 
1 -A,-‘k;A,‘k; I&) 

(alA T ‘k :A r ‘Id 
1 

’ I-kI,l(g,k,(A,lk;A~*k;Ig,)’ 
(4.31b) 

where, in the second step of each of these equations, we have 
used the expansion (1-A)-‘=l+A+A*+*** in 
which A=A,-‘k;A;‘k;. The scalar (g,JA,‘Jg,) ap- 
pearing in Eq. (4.13a) has already been given in Eq. (4.25b) 
and (g,k,lA ,- ‘k ;A ; ‘k ; Ig,) and (g,lA ; ‘k ; A 1 ‘lg,) are 
calculated, using the decoupling approximation and Eq. 
(4.28), as follows: 
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Combining Eqs. (4.32), (4.31), and (4.25), we have 

Q,(s) = s( 1 + =,I + 4s2 1 - k,, + 4,* (su,, - k,,) 

.?(I +a,, +a,) + _ (g’iklk21~)~lk,k2lg,) ’ 
le 2e > 

Q,(s) = 
k,, - (k-h) (s=sz - k,, > 

a1 -I-=,, +a,) + .s24,,4, - 
(g,Ik,k,lg,)(g,lk,k,lgz) ’ 

W,, > 

(4.33a) 

(4.33b) 

Since the dominant term in a, is k,/s, as shown below in 
Eq* (4.4519 and (gilkikjIgi)-(gilkikjIgj)(gjlgi)k,’ 
X (gi (ki ]gi) =: kiekje, we expect the quantity (?a,, a, 
- (8, ]klk2]g1) (g2~k1k2~g2)/klekZe) in the denominator of 

Eq. (4.33) to be small and negligible compared with 
.? ( 1 + a,, + a, ) . Therefore, Eq. (4.33) can be approximat- 
ed as 

Q, Cd=: 11s - [ 4, - 4, (s=,, - k,, I] / 

[a 1 + 4,’ + 4** I], (4.34a) 
Q,(s)=: [k,, - (k,,s-‘)(s=, -r&e)]/ 

[al +=,I +4,)], (4.34b) 
When the reverse reaction is neglected, Q, (s) in Eq. (4.34a) 
is identical to Eq. (4.25b). These equations obey the self- 
consistency condition Q,(s) + Q,(s) = l/s when the fac- 
tors of the form (~a,~ - k, ) appearing in these equations are 
neglected, i.e., set equal to zero. They are indeed zero to 
leading order in the expansions of a,, in (s + E, ) - ’ and in 
the four limiting cases discussed below. Hence we arrive at 
the self-consistent approximations 

Q,(s) = 11s - Q,(s), (4.35a) 
Q,(s) = k,,/[s*( 1 - a,, + us2 I]. (4.35b) 

This is our approximate general solution for the reversible 
case and is the main result of this section. The problem now 
reduces to the calculation of LI,, and us2 from the properties 
of the operaiors Hi an2 ki and the inversion of the Laplace 
transforms Q’ (s) and Q2 (s) . From the argument leading to 
a,, it follows, mutatis mutandis, that 

asi =k,‘C (s+E,)-‘(U,,iIkilgi)’ i= 132. 
It=0 

(4.36) 
This spectral decomposition of clsi (s) is related to the 
Green’s functions introduced in Sec. III. The inverse La- 
place transform can be evaluated in closed form and is given 
by the integrand in Eq. (AlO) of the Appendix. 

The resemblance of Eq. (4.35) to Eqs. (3.13) and 
(3.27) of the previous section is very striking. In the slow 
reaction limit the thermal equilibrium distribution of the po- 
larization coordinate is maintained. For the diffusion pro- 
cess alone, this corresponds to “large” t ) rL, or small s. In 
this case, Eqs. (4.36) and (AlO) give a,, zk,/s and Eq. 
(4.35) then leads to Eq. (3.13). In the nondi$“usion limit 
ki (x) % 7~ ‘, which is proportional to the eigenvalues of Hi 
[see Eq. (4.5)]. Diffusion along the reaction coordinate 
may then be neglected and the operator (s + Hi ) - * zs - *. 

I 
From Eq. (4.291, asi zk i, ‘&ilk ;lgi)/s. zzki (x)/s since 
ki (x) is independent of the diffusion in this limit. This can 
also be derived from Eq. (4.28) by letting Hi = 0. Substitut- 
ing these into Eq. (4.35) and taking the inverse Laplace 
transform we have Q, ( t) = 1 - Q,(t) and 

X[l _.-l*,~~,+*,~~,~~]]dx, (4.37) 

which is essentially identical to Eq. (3.19). In the wide reuc- 
iionwindowlimit/2,~&, A=:O[seeEq. (All)],k,(x)can 
be approximated as a constant ki, and Eq. (4.29) or Eq. 
(AIO) gives ~,zk,/S. Equation (4.35) then leads to Eq. 
( 3.13 ) with the rate constants ki shown in Eq. (3.54). In the 
narrow reaction window limit, k, (xl = k,(x) 
= ko6(x - x,), A = /2,/A = 1 and Eq. (3.20) applies. It 

follows that 

k,, =ko(g,(x,)lg,(xc)) 
=ko(2?rk,T)-“*exp( -fixf/2), 

k2e = ko (8, (xc - xo ) lg, (x, - x0 > > 

(4.38a) 

=ko(2’rkBT)-“*exp[ ---/3(x, -x0)*/2]. 
(4.38b) 

From Eq. (4.36) we have 

asi =k,‘k, 2 (S+E,)-’ 
n=O 

x (%,i 0, )I& t-q 1)” i = 1,2, (4.39) 
which, following the discussion in the Appendix, can also be 
written in the form 

a,* (S) = d2:LBr o” emSf( 1 _ e-2f/rL~ - l/2 J 
XexP[ -$-(i i:I:lz)]dt, (4.4Oa) 

4~* (S) = J2:lBT ow e-“‘( 1 _ e-2t/rLj - l/2 J 
x exp 

(4.4Ob) 
which are exactly the Green functions k, G, (x, (x,,s) and 
k,G,(x, -x01x, -xo,s) appearing in Eq. (3.27). In this 
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case Eq. (4.35) is identical to Eq. (3.27). 
Our general solutions also allow us to go beyond these 

limiting cases. For instance, in the same spirit as our analysis 
in Sec. III we can consider an interpolation between the long 
and short time limits. 

A. Single exponential time dependence 

When t)rL,Cld(S) s=k,/‘s(i= 1,2) but when c(T‘, 
exp( - t/r,) =: 1 - t/r‘, and it follows from Eq. (AlO) 
that 

%I (3) =vJlx,, I, (4.41a) 
42 0) =a2rJIx2c - x0 1, (4.41b) 

where 
Lzi =Vq[TAq(l +A)/(~/L44)]“2 

XeXp[yi(l --A)/(1 +A)] [l -*(vi)] i= 1,2 
( 4.42) 

in which A = &/,I, 

Y, =8(1 -A)&/4, (4.43a) 
Yz=P(l -A)(x,, -xo)2/4, (4.43b) 

and @(yi ) is the error function defined by 
Y 

WI = erf(y) = (2/7F2) 
f 

exp( - t 2)dt. (4.44) 
0 

Interpolating between these limits we write 
a,, b) &e/s + a,7L//X,e(, (4.45a) 
42 (s) &e/s + c-q&,, - x0 I, (4.45b) 

and on substitution in Eq. (4.35) we find 
Q,(s) = l/s - Q,(s) and 

Q2W z (k,,/aV[s(s + k,,/a -t- k,,/a)], 
where 

(4.46) 

a = 1 + al~Jlx,,~ + a27-Jlx,, -x0 I. (4.47) 
Taking the inverse Laplace transform of Eq. (4.47), 
Q,(r) = 1 - Q2(t) with 

Qz(~) = [W(k,, + k,,)]Cl - exp[ - (k, + k,)t]) 
(4.48) 

which show a single exponential time dependence with the 
overall rate constants given by 
ki = t&/a = kit/[ 1 + a,7;/lx,,( 

+ a2~Axzc - x0 ( ] i = 1,2. (4.49) 
This expression covers the different limiting cases and con- 
forms to the principle of chemical equilibrium which re- 
quires that k/k, = K = exp( - BAG O). We expect that this 
interpolation will have wider applications. 

B. Multiexponential time dependence 
This is found when one includes higher terms in the 

series expansion of Eq. (4.36). If we take a two term approx- 
imation of a,i (s), Q, (t) displays a double exponential decay 
with time from which the general pattern is clear. Taking 
into the first two terms of Eq. (4.36) we have 
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a,, (~k=k,,s-~ + (s + 7;‘) - 1k,e/3A2~:c, (4.50a) 

as2 0) =kkzes- ’ + (S + 7~ *) - ‘k&IA 2(~2, - x,)~..., 
(4.5Ob) 

where we have made use of the fact that (11,~~ Ik,lg,>’ 
= k :,/?A ‘xfC and (u,., (k2(g2j2 = k :,PA 2 (x2= - x0)2. 

Substituting in Eq. (4.35), Q,(s) = l/s - Q,(s) 
Q20) z:k,e (s -t- ri- ’ )/{s[? + SB + (k,, + k,, )rF ’ 

$1) 
where 

B =rr’ + 4, + 4, + PA ’ [ k,,x:, 

+ he (x2, - xo ) ‘1. (4.52) 

The denominator of Eq. (4.51b) is a polynomial of order 
three; using the familiar partial fraction decomposition and 
taking the inverse Laplace transform we find 
Q,(t) = 1 - Q2W and 

Q,(f) &,/(k,, + k,,) + C + exp( -K+ t) 
+C- exp( --K-t), (4.53) 

where 

C* = Gk,,[l+ (vi)-‘I/ 

[B2-4TF,(k,, +k2,)],‘2 (4.54) 

and - K* are the roots of the second order polynomial in 
the denominator of Eq. (4.5 1) given by 
-22K* = -B* [B2-4r~‘(k,, +k2,)]“2. (4.55) 

It can be verified that when t = 0, Q2( t) = 0, and that as 
t+co,Q,(t)*k,,/(k,, + k2e) whichisitsequilibriumval- 
ue. If instead of two, we used the first n terms the expansion 
of a,i (s), the form of Q2( t) will be 

Ql(t) zk,,/(k,, + k2,) + BiCi exp( -hit), (4.56) 

where - ~~ are the ‘roots of an nth order polynomial. The 
addition of more terms thus leads to multiexponential de- 
cays which are attentuated by the eigenvalues E, = n/rL of 
the operator Hi. This type of multiexponential behavior has 
also been discussed earlier. I9 

V. NUMERICAL SOLUTION OF THE DIFFUSION- 
REACTION EQUATIONS 

In the last section we have discussed the analytic solu- 
tion for several approximations to the reaction-diffusion 
equations and various limiting cases were derived in Sec. III. 
Here we compare these with the numerical solutions to the 
same equations. To do so Eqs. (3.1) and (3.2) are written as 

ap,iat 1 = a 2p,/dz2 + zap,/az + P, 

- k,r,P, + k,r2,, (5.la) 
aP,/at 1 = a2p2/az2 + (Z - Z, )ap,/az 

+ p2 - k,r,P, + k,rd’,t (5.lb) 
whereP,=P,(z,t),P2=P2(z,t),t’=t/rL,z=x,!3,’2and 
zo=W&) * 1’2 The rate constants are now rewritten as 

k,(z) =v; exp[ - (z---,~)~], (5.2) 

k,(z) =v; exp[ - (z--~~)~], (5.3) 
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with V; = v&3 “2 and z, = x& “’ for i = 1,2 where xiC is 
defined in Eq. (2.10). The differential equations (5.1) are 
then transformed into the following difference equations: 

P,(m,n + 1) = b,P,(m,n) + r[P,(m + 1J) 
+ P,(m - l,n)l + hn, [PI@ + Ln) 
- PI( + rTLk2P2(m,nIt (5.4a) 

P,(m,n + 1) = b,P,(m,n) + r[P,(m + l,n) 

+P,(m-- An)] +hr(z, -z,) 

X [P,(m + Ln) - P2(m,n>l 
+ rrLWl(m,n), (5.4b) 

where the discrete quantities m and n represent the contin- 
uous variables z and t ‘, respectively, r = t :, + , - t :, is the 
time step, h = z,+ , -z, is the spacing of the grid, 
r=r/h2,b, = 1 -2r+r(l -rLk,) and b, = 1 - 2r 
+r(l -r,k,). 

The solution of Eqs. (5.4) requires the initial distribu- 
tions which are assumed to be the thermal equilibrium distri- 
bution for P, (z,O) and zero for P2 (z,O) . The boundary con- 
ditions are P,( - OZ,~) = P,( CQ,~) = 0 and P,( - ~,t) 
= P2( 03 ,t) = 0. Physically this means the probability of ob- 

serving the system at intinitely large values of x is zero both 
for reactants and products. For a given initial distribution of 
P,(z,O) and P2(z,0), the probabilities Pi(z,t) at different 
time steps are calculated from Eq. (5.4) and then averaged 
over z to get the survival probabilities Qi (t) . The results are 
presented in Figs. 1-4, where the full lines represent the nu- 
merical results. The curves with crosses are calculated from 

the double exponential approximation Eq. (4.53) and those 
with black circles and squares are determined from the inter- 
polation formula Eq. (4.49) and the nondiffusion limit given 
in Fq. (4.37). 

In Figs. 1 and 2, the parameters are chosen as 
BAG0 = - 1, k, = l/ps, il, = 2.5, A,/;I, = 1 but the 
longitudinal relaxation time rL is allowed to vary between 
small values characteristic of the slow reaction limit and 
large values typical of the nondiffusion limit. It is seen that 
the interpolation formula Eq. (4.48) gives a good agreement 
with the numerical results near the slow reaction limit where 
it merges with double exponential approximation. As rL is 
increased the multiexponential character of the decay 
emerges and the double exponential approximation gives 
better agreement. For higher values of rL more terms need to 
be considered in the multiexponential decay expression to 
obtain better agreement with experiment. At the largest val- 
ue of rL = 1000 ps the numerical results essentially coincide 
with the nondiffusion limit given in Eq. (4.37). 

In Figs. 3 and 4, rL = 10 ps and the other parameters 
are the same except for n,/,l, which is changed between 
values typical of the narrow window limit and the wide win- 
dow limit. In the wide window limit, the interpolation for- 
mula Eq. (4.49) agrees with the numerical results and 
merges with the double exponential approximation. As A, 
becomes smaller, the double exponential approximation 
gives a better description than the interpolation formula. 
Further decrease in ;1, leads to progressive deterioration of 
the double exponential approximation. Finally when the 
narrow window limit is reached the double exponential ap- 
proximation fails completely and the interpolation formula 
leads again to a good agreement at short times. 

0.8 - 
PAGO = -1 .O 
p, 8 2.5 

0.6 - 

FIG. 1. Plot of the survival probability 
Q, ( t) vs time t with r, = 0.03 ps and 0.5 

parameters are 
;;,O”“_ 1PdfergA, = 2.5, A,/& 
= l.O,andk, = l.Ops-‘.Tkefulllines 
(-) represent the numerical results and 
the lines with dots (-O-) and crosses 
(- + -) represent the results calculated 
from interpolation formula Eq. (4.48) 
and double exponential approximation 
Eq. (4.53), respectively, using 
Q,(t) = 1 -Q,(t). 
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0.6 

0.4 

PAGo = -1 .o 
px, = 2.5 

“qAo = 1 .o 
k,=i.O pa' 

y = 1000 ps 
FIG. 2. Plot of the survival probability 
Q,(t)v~timetwithr~ = l,lO,and 1000 
ps. The line with squares (-¤-) repre- 
sents the results calculated from the 
nondiffusion limit Eq. (4.37) and 
Q,(r) = 1 - Q2(t). The other param- 
eters are the same as for Fig. 1. 

IO 
t PS 

26 

VI. DISCUSSION 

We have discussed in considerable detail the dynamics 
of reversible electron transfer reactions in a Debye solvent in 
which the intramolecular and solvent reorganization ener- 
gies play a role in bringing the reactants to the activated 
state. The motion of the reactants and products along the 
reaction coordinate is described by a pair of coupled diffu- 

sion-reaction equations which can be solved in four limiting 
cases as discussed in Sec. III. An approximate general solu- 
tion to these equations, derived in Sec. IV, also describes the 
four limiting cases and predicts the behavior between these 
limits. These predictions are compared in Sec. V to numeri- 
cal solutions of the coupled differential equations and are 
found to be useful and often quite accurate. When the time 
dependence of the survival probabilities are single exponen- 

I- 

r- 

0.9 

53 
(5 

0.; 

O.! 

0.: 

i- 

FIG. 3. Plot of the survival probability 
Q,(f) vs time I with A,/& = 10, 100, 
and 1000. The other parameters are 
,8AG” = - 1.0, /Ll = 5.0, r, = 10 ps 
and kc = 1.0 ps - ‘. See the caption of 
Fig. 1 for other details. 
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tials, the corresponding rate constants satisfy the equilibri- 
um requirement that k,/k, = exp( - j3AG,, ); this also 
serves as a check on our analysis. The Green’s functions 
arising in the narrow window limit (Sec. III) are precisely 
the a, (s) functions which appear in our general solutions. 

Our general solution Eqs. (4.35) predicts that the time 
dependence of the survival probabilities is usually multiex- 
ponential [see Eq. (4.56) ] but the lowest order approxima- 
tion for the Laplace transform functions asi (i = 1,2) ap- 
pearing in this equation leads to a single exponential 
dynamics at sufficiently long times. In the Sumi-Marcus 
model discussed here, the potential energy surface for the 
diffusion process is parabolic, and the eigenvalues of the dif- 
fusion operator are E,, = nr~ ’ [see Eq. (4.5) ] where 7r. is 
the longitudinal relaxation time of the solvent. When ditfu- 
sion along the reaction coordinate is relatively fast, the inter- 
val between the eigenvalues is large, and one or two terms in 
the expansion of a, may be adequate. This will lead to single 
or double exponential time dependence of the survival prob- 
abilities. In the long time limit, which corresponds to smalls, 
the first term in ud becomes dominant, in which case single 
exponential dynamics is expected (see Figs. 1 and 3 ) . If the 
diffusion process is not so fast, the eigenvalues E,, are packed 
closer to each other and the higher order terms in the expan- 
sion of usi have to be taken into account; in this case multiex- 
ponential dynamics would prevail as illustrated in Figs. 14. 
The higher eigenvalues correspond to regions near the top of 
the barrier and are more important in determining the tran- 
sient dynamics at short times. In these regions we expect 
tunneling, which has not been explicitly considered in this 
study, to play a more important role. The lower eigenvalues 

regulate the behavior of the survival probabilities at long 
times when single exponential behavior eventually prevails. 

In both the slow and wide reaction window limits, the 
single exponential time dependence is determined by a com- 
bined rate constant k, + kZ, which is independent of the sol- 
vent longitudinal relaxation time rr.. Between these two lim- 
its there are regions in which the relaxation of the solvent 
plays an important role. 26 The interpolation formula given 
in Eq. (4.49) shows that the rate constants depend on rL and 
the intramolecular and solvent reorganization energies R, 
and A,, respectively, as well as the free energy for the reac- 
tion AGO. It follows from EQ. (4.49) that when rr. is small, 
i.e., in the slow reaction limit, kj + k, which is independent 
of T=. When il, is very large (il, $;1, ) and rL is finite, ai 
defined in Eq. (4.42) tends to zero and the interpolation 
formula leads to the wide reaction window limit. At and near 
both these limits, the single exponential interpolation formu- 
la gives good agreement with the numerical results (see Figs. 
1 and 3). IfA, is very small (il, (il, ) and rL is finite, A = 1, 
ai -+ vq [ 27d,/(&l) ] “* + k,, and Eq. (4.49) for the rate 
constants reduces to Eq. (3.30) which characterizes the nar- 
row window limit. If the strength of the delta function k, is 
set equal to 27~J *, we regain Zusman’s13(a) single exponential 
interpolation formula from Eqs. (3.30). In spite of the fact 
that multiexponential decay is expected in this limit, Fig. 4 
shows that the interpolation approximation also gives fair 
agreement. Thus, although the reaction dynamics generally 
depends on the solvent dynamics and the height of the reac- 
tion barrier, one or the other factor is dominant in different 
cases. 

In the narrow reaction window limit, it follows from 

0.3 
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FIG. 4. Plot of the survival probability 
Q,(t) vs time t with A,/& = 5 and 
O.OC03. The other parameters are the 
same as Fig. 3. See the caption of Fig. 1 
for other details. 
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Eqs. (3.39) and (3.40) that multiexponential time depen- 
dence of the survival probabilities is expected when the acti- 
vation energies for both the forward and reverse reaction are 
negligible, i.e., the reactions are barrierless. At times fairly 
long compared with rL, a single exponential can be extract- 
ed; assuming k, rt ) 1 in Eq. ( 3.47)) a symmetrical rate con- 
stant (k, = k2) of 0.8337; ’ is obtained. At short times, the 
decay would be faster and we expect the rate constant to be 
larger ( z 7~ ’ ) . Therefore the rate is totally controlled by 
the solvent dynamics in this situation. Even though this case 
is expected to be rare, we anticipate that this could occur in 
charge transfer reactions in nonpolar solvents. 
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where A(t) is the sum of the exponentials each with its own 
relaxation time. Using this argument to extend our general 
results for electron transfer reactions characterized by two 
reaction coordinates (vibration and solvent polarization) to 
non-Debye solvents, we need to replace the factor 
exp ( - t /rr. ) in the a,, ( t) of Eq. (4.35 ) by the time correla- 
tion function A(t) of the reaction coordinate. The details 
will be discussed elsewhere.27 
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APPENDIX A: CALCULATION OF a,(s) 

The general solutions for the Laplace transforms of the 
survival probabilities given in Eqs. (4.35) depend on a,, (s), 
which are defined in Eqs. (4.29), and we discuss its calcula- 
tion in this Appendix. An expansion of asi (s) in terms of the 
eigenvalues E, and eigenfunctions 1 uei) of the operator Hi is 
given in Eq. (4.36). The operator Hi, defined by Eq. (4.4)) 
has no zero point energy but is similar to the Hamiltonian 
operator for a harmonic oscillator. The eigenfunctions are 

Finally we make a few comments on how to extend the 
present results to non-Debye solvents. The Fokker-Planck 
equation corresponds to the Langevin equation with a fre- 
quency independent friction which models electron transfer 
in a Debye solvent for which the Laplace transform of Q-~ is 
frequency independent. For a non-Debye solvent the dy- 
namics of the reaction coordinate will obey the generalized 
Langevin equation and the Fokker-Planck operator appear- 
ing in the present paper has to be replaced by a generalized 
one.‘@) If the potential well is still parabolic, the probability 
distribution corresponding to the generalized Fokker- 
Planck operator is still GaussiansCa) as given in Eq. (3.26) 
except that the time dependent factor exp ( - t /rL ) has to 
be replaced by the time correlation function of the reaction 
coordinate A(t) = (x(t)x(0))/(x(O)2).s(a)~24(a) In the 
overdamped limit the Laplace transforms’a’ of this time cor- 
relation function is 

I”,i) = (2”n!)-“2(2V)-1’4exp( -.$/4) 

XHn tzi/2”*) i = 1,2, (Al) 

wherez, = fl “*x, and z2 = p “*(x - x0 ) ,H, is the Hermite 
polynomial. Note that the eigenfunctions depend on the 
temperature T through/3 = l/k, T. The ki which appears in 
the expansion of asi is given in Eq. (2.2 1) and the scalar 
products appearing in the same expansion can be calculated 
term by term. Generally ~1,’ #ar2, but for the special case 
of activationless reactions, AG : = x:,/2 = 0 and 
AGT = (x2= - x0 )*/2 = 0, a complete form can be ob- 
tained for i = 1 or 2. We have 
(unilkilgi> =0, n odd (A21 

(unilkilgi) = vq(2n2”n!) -“2 
s 

exp[ - (l/2 + y)2] 

x H,, (zJ~*‘~)~z~ 

= vq (2?T2”n!) - “2 

(n - 2k)/2 9 (A3) 

where we have used Eqs. (Al), (2.21) with 
k, = V~ (;li/il)“* and y,, =/2,/U,. In Eq. (A3), the inte- 
gral /,, is given by 

A(s) = [s + r, ‘(s)] - ‘. (6.1) 

For the Debye solvent, T= (s) = rr. is a constant, and Eq. 
(6.1) leads to A(t) = exp ( - t /rt ). For a non-Debye sol- 
vent, Hynes”‘) and Fonseca24(a) have considered the case 

I, = 
I 

z2”exp[ - (l/2 + ro)z2]dz 

= (~i/;l)“(2~~i//Z)“2(2n - l)!! n = 0,1,2,3... . 
(A41 

Substitution of Eq. (A4) into Eq. (A3) leads to 
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(U”jIkilgi) =k,( - 1)“‘2(;1J/2)“‘2(n!)-“2 

X (n - I)!! (n even). (‘45) 
It follows from this that, for a barrierless reaction, 

= k,fW. (A61 

For the barrierless reaction, xlC = 0, and xzC - x0 = 0, and 
Eq. (A6) can be derived from Eqs. (AlO). Equation 
( AlOa) has been given earlier by Sumi and Marcus,‘* where 
in our opinion, A * in the numerator of the exponential is 
misprinted as A. When A = 1, cz,, (8) and us2 (s) are identical 
to the Green’s functions discussed in Sec. III in connection 
with the narrow window limit. 

This is identical to the expression derived by Sumi and Mar- 
cus” from the density matrix for the harmonic oscillator 
when il,/il = 1. Our expression is thus slightly more general 
than theirs. Note that f(s) in Eq. (A6) is the same f(s) 
defined in Eq. (3.34) when&//2 = 1 (i.e., /zi = 0). 

Equations (AS) and (A6) do not apply to reactions in 
which the barrier is nonzero but, following Sumi and Mar- 
cus, ‘12 U,i ( i = 1,2 ) can be calculated from the density matrix 
for a harmonic oscillator. Taking the inverse Laplace trans- 
form of Eq. (4.29) we have 
ai =k,‘(gtkilexp( -Hi(t)lkigi) 

=k,‘8,2,(giIkiIu,i)(u,iI 

xexp( -emt)l~mi)(u,iIkigi) 

=k,’ 
Is 

gi (x)ki (X)pi (x,Ytt)ki (v)gi (y)dxdv, 

(A7) 
where the density matrix pi (x,~+t) defined by 

Pj(x,y9t) = ZnUnj(X)Uni(Y)eXp( - E,t) (A81 
corresponds to that of a harmonic oscillator and is well 
known.25~‘8 Since e,, = n/r= it follows that 

PI kw) = [ 2rk, T ] ( 1 - e - 2”rL) - I” 

XexP 1 - $[ (x +y)2tanh(t/2r,) 

+ (x -.H2coth(t/2r1.)] (A9) 

and p2(x,~,r) has the same form as p,(x,y,t) except that 
(x + y)2 has to be replaced by (x + y - 2x, )2 in the argu- 
ment of the exponential term. Substituting in Eq. (A7), do- 
ing the integral and taking Laplace transforms 

a,, 0) = k,, 
s 

co e - S1( 1 _ A 2e - 27 - l/2 

0 

A 2e - r/r, 

1 + A~z-“‘~ 
dt, (AlOa) 

m - - - a, 0) = 4, e S,( 1 A 2e 2t/r,) 1/2 _ 
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