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The average force between two ions in a Stockmayer fluid has been computed as a function of interionic distance by 
Monte Carlo simulation. The ion-solvent energy has tiso been ulculsted for each ionic configuration. 

I. Introduction 

This report is on a Monte Carlo calculation of the 
average force between a pair of ions in a polar solvent. 
The latter is assumed to he a Stockmayer fluid at a re- 
duced density p * = 0.74 with the reduced tempera- 
ture set at 1 .O. The dipcl:: moment p of each solvent 
molecule is 1.36 debye and the LennardJones param- 
eters u and Elk have been taken as 3.405 A and 
119.8 K respectively. The dielectric constant D of 
this fluid is approximately 30 according to the mean 
spherical approximation for point dipoles [I 1; it is 
nearly 12 when the Cnsager theory is employed [21. 

To complete the description of our model system of 

two ions in a polar solvent, we must also specify the 
ion-ion and ion-solvent interactions. We have, of 
course, the usual Coulomb potential (e+e_/r) between 
the ions, and the ionaipole potential (eip cosB/$) 
between an ion of charge ei and a solvent molecule of 

dipole moment P, but in addition to these, we also 
suppose that there are Lznnard-Jones interactions 
between all species (ions and solvent molecules) in 
solution. The mo!ecular parameters, u and e/k, for 
these additional forces are taken to be precisely the 
same as those assumed fr3r the solvent-solvent poten- 
tial, so that if the charges on the-ions and on the di- 
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poles are turned off, there would be no way of distin- 
guishing the two molecules which we-e ions before 

discharge from the sea of solvent molecules which sur- 
round them. 

An important conclusion of our work is the demon- 
stration of the feasibility (in terms of computer tech- 

niques and running time) of a Monie Carlo calculation 
of the potential of average force between two ions at 
infinite dilution. Apart from this some interesting 

features are already apparent in our results with the 
simple Stockrrayer solvent. For example, the “hump” 
which appears in the average force as a function of in- 

terionic separation (fig. 1) seems to be related, at least 
partly, to the granularity of the solvent. Much inore 
extensive (and costly) computer runs will have to be 
done to confirm this effect, and its interpretation, but 
the results obtained so far seem to be statistically sig- 
nificant. We have also calculated the energy of interac- 

tion between an ion and the surrounding solvent 
medium as 2 function of the distance of separation 
between two ions (fig. 2). These results have a beariig 

on our understanding of how the solvation energy of 
one ion is influenced by the presence of another near- 
by- 

To extend these studies to aqueous systems, we 
would require a more sophisticated model for the 



Volume 34, number 2 CHEMICAL PHYSICS LETTERS 1.5 July 1975 

k % 
Lo- 

0 

[ 

--- -\ 
- -4 

I 
hi 

‘%._ 1 
r -- __ - 

- :f i! 
1.5 20 2.5 (&) 

1 

/I 

If 
-LO- / 

Fig. I. The average force (in reduced units) on an ion b as a 

function of the distance r from an ion of opposite sign. The 
curves from top to bottom represent cF~,~ “l”) ~/NE. FbU, U/NE, 
(Fb,xi U/NE and F~xu’o/N~. The points 5 and ’ o ue 
the mapitudes of the mezm ion-solvent forces computed for 

=ch ion; the avenges of these, shown as dark circles on the 
me CUNC, are CILU best estimates, used to &cuMe the tot=1 

averse force (Fb,r) (S/NE shown in the same fgure. 

solvent, such as the one employed in recent molecular 

dynamic studies of liquid water by R&man and Stil- 
Linger 131. With more complicated potentials it may 
be also necessary to study a larger system, with an at- 

tendant increase in ccmputer time and work, but our 

preliminary work here shows that efforts in this direc- 
tion are likely to be rewarding. 

2. Theoretid backgound 

A clue to the resolution of the electrolyte problem 
comes from the realisation that the reduced ionic den- 
sity pa3 in 2 simple aqueous ionic solution at a con- 
centration typical of the usual preparative range (e.g., 
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Fig. 7. The avernge ion-solvent energy (in reduced units) of 

nn ion as a function of the distance from an ion of opposite 
sign. The limiting value at r = - is the energy calculated for a 

single ion in the solvent medium. The points a and c are rhe 
jldividual mean ion-solvent cncr@es for arh ion, while the 

dark circles represent the average of these two energies which 
zue ou: best estimates of (E‘)fNc. 

2 molar NaCl solution) is nearly an order of magnitude 
lower than the reduced solvent density paa. Typical 
values for a ? molar l-l electrolyte such as sodium 

chloride would be -0,OS for the reduced ionic density 

and nearly 0.7 for the reduced solvent density. The 
ion-ion interactions are also very different from the 
ion-solvent and solvent-solvent potentials, so that it 
is useful to separate the statistical mechanical calcula- 

tion into two pa& by averaging successively over the 
solvent molecules and then over the solute (ionic) par- 
ticles 141. It is the first of these averaging processes 
which interests us here, a,problem which has been 

treated theoretically elsewhere [5,6]. 

Ions 
Avenges over 

f Potentials of 
solvent the solvent molecules average force at 
molecules (Monte C=lo) infinite dilution 

Averapes over ions 
+ Thermodynamics. 

(HCIJ, OPRA + Bz) 
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We assume that the plotential of average force at in- 
tkite dilution among n ions is pairwise additive, 

and it becomes convenient instead to compute the 

(1) 

so that it is {eally the determination of the solvent 
averaged pair-potential $?(a, b) which concerns us 
here. When this is known, the second problem of aver- 
aging ok the coordinares of the ions can be tackled 

by a variety of methods which have been developed 
recently, e.g., the hypernetted chain or ORPA + B, 
approximaticuls [6] _ 

Suppose two ions a and b are held fixed at a dis- 
tance P,~ apart in a box of volume V containing N 
solvent molecules whos? coordinates bosition and 
orientation) are denoted by {N]. Then the expression 
for W,O(a,b) is 

where 2 is the canonical ensemble partition function 
for the whole system oi‘N+2 particles, and UN+2 is 
the configuration energy of this system. We can split 
U,, into two parts; the direct ion-ion interaction 
u,~ and the rest Uhc2 which includes ion-solvent 
and solven?-solvent terms. 

uN+2 = Uab + u~+2 - (3) 

The ion-ion potential nab is the sum of a Lennard- 
Jones term and a bare Coulomb term: 

%b = Uab u + za’ob/rab . (4) 

Since it does not enter into the averaging process im- 
plicit in (2) we may write 

or takng the logarithm of both sides 

-@‘j = .-pUab f In [(r”/Z) J‘exp (-PU,;,2)d(N]j . 

(6) 

The interionic potential uaLob is of course known 
completely, which reduces the problem of determining 
Wi to the problem of calculating +Ihe second term in 
(5). A Monte Carlo calculation of this term is difficult, 

average force on each ion by taking the appropriate 
gradient of (6). The average force on ion b for example 
is 

J- 'b %‘+2 exP (-I%c2)d{N] 
= -V,U,, + 

s exp (-411,;+,)dIN] _ 
(7) 

The first term in (7) is simply the direct force on ion 
b due to ion o; it is the sum of a Lennard-Jones force 
and a Coulomb force. 

-vb ltob = p;bu f F;"'l . (8) 

The next term in (7), which we have calculated here 
by Monte-Carlo simulation, is the average force which 
the solvent molecules exert on ion b. Writing this as 
(Fr’>, we have 

(Fb) = Fp f Fpl + (f+ , 
where 

(9) 

iFb”Y = 
s Frr” exp (-DUh,,)d INI 

J exp (-PUk+,)dCN] 
(10) 

and 

= c Fsy _ F (y - 3e, @sm~)rsb) . (11) 
s 

‘sb sb 

By resolving this force into three mutually perpendic- 
ular components, one finds, by symmetry, that the 
only non-vanishing solvent-averaged force on ion b is 

(Fpt), where the x direction is along the line joining 
the’two ions a and b. Our MonteCarlo simulation 

monitored the six components of the forces on the 
two ions. In an exact calculation, four of these com- 
ponents (along they and z directions) would be ex- 
pected to be zero, while the other two (along the x 
direction) should be equal but opposite in sign, since 
the two i&s are identical except for the signs of the 

ionic charges. The average ion-solvent energy 

I- Esb exp (-PU~+2)dENl 
(E$= s ew (-BU,b+2)dW ’ 

(12) 
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where 

(13) 
We wish to emphasize again that there are only two 

ions in our system. They are placed at a distance r,, 
apart, and the averages that we calculate are averages 
over the positions and orientations of the solvent 
molecules, which are, of course, influenced by the 
presence of the two ions. 

3. MonteCarlo calculations 

The Monte-Carlo method used was essentially a 
modification of the procedure described by McDonald 
[5] for a Stockmayer fluid, so we wiii discuss only 
those features that were peculiar to this calculation. 
The first novelty was that there were two particles, 
namely the ions, which were always held fixed during 

each run. One of these ions was a positive ion and the 
other was negatively charged. They were placed sym- 

metrically about the center of a cube on a line passing 
through the middle and parallel to four edges. The 
solvent molecules were 108 other particles in the same 
cube of volume V maintained at temperature T. Each 
side of cube was approximately 5.24 u in length, and 
calculations were done for six interionic distances 

ranging from 1.048 u to 2.353 o at intervals of 0.261 CJ. 
A chain of configurations was generated by choos- 

ing, displacing and rotating solvent molecules random- 
ly in precisely the way described by McDonald in his 
study of Stockmayer molecules [7]. The change in 

energy of the whole system was calculated after each 
move, which was accepted or rejected by applying the 
criterion suggested by Metropolis et al. [S] _ The initial 
configuration of the N solvent molecules was either 
the equilibrium state of a Stockmayer fluid obtained 
in an earlier study or it was the final state determined 

by us (usually in the previous run) for the interionic 
distance closest to the one under consideration. In 
either case, the first 50 000 configurations were not 
used in calculating the configurational averages. kr. 
additional 800 000 configurations were generated for 
this purpose, and the average force on each ion and its 
energy of interaction with the solvent molecules were 
computed as mean values over these configurations. 
Periodic boundary conditions were used throughout, 
but the interactions between ions in neighboring cells 

were suppressed. Since the line joining the ions is an 
axis of symmetry for the system, some errors in com- 

puting the interactions between the ions and solvent 
molecules in the primary cell with solvent particle: in 
neighboring cells were tinavoidable. We have also not 
allowed for the effect of the reaction field, a necessary 

correction if our results are to reflect the behavior of 
an infinitely large system. By ignoring it, the absolute 
magnitude of the energy and the large rab dependence 
of the average force may have been altered, but it is 
less likely that the behavior of the forces at sm211 rob 

would have been radically changed. Important chemi- 
cal effects are included in the latter, since it reflects, 
in the language of solution chemists, the nzt effect 

due to solvent granularity, co-sphere overlap and di- 

electric saturation and repulsion [4,6]. 
Our main results are summarized in table 1. The 

average forces and energies are given in reduced units 

(Fb,x a/NE and E/NE), but the magnitudes are in fact 
the average of the magnitudes of the Monte Carlo re- 
sults for each ion. We are able to do this, and inciden- 
tally improve the accuracy of our calcuiatiocs, because, 
as we have remarked earlier, the average force on a 

positive ion is equal in magnitude but opposite in sign 
to the corresponding force on a negative ion while the 

salvation energies of both ions are equal in magnitude 

and sign. These, of course, follow from the symmetry 

of our model system. In fig. 1 (upper part) and in 
fig. 2 we have displayed the individual as well as the 
average forces and energies for each ion. The error 
bars in fig. 1 (also table 1) equal twice 

max {(FJ?‘, a/NE, (Frk’> ~/NE 1 , 

which should be zero since there are no solvent-aver- 
aged forces in they and t directions. The discrepancies 
between the magnitudes of the forces on the two ions 
in the x direction, which is along rab, are also within 
these error bars. 

Figs. 1 and 2 also show how strongly the average 
forces and energies are influenced by the proximity of’ 
the two oppositely charged ions. When fnb is very 
large, the average force on each ion should tend to 
zero as e, eb/D&, and the ion-soivcnt ideraCtiOrI 

energy of either ion must approach the energy of a 
single ion in the solvent medium. We have found by a 
Monte-Carlo calculation of the interaction energy of 
one ion placed at the center of the cube, tliat this 
limiting enera is approached rapidly at first when rOb 
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Table 1 
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MonteCarlo calculation of the average force on an ion and its average energy in a Stockmayer solvent containing just two ions. 
The separation between the ions is r, the temperature T = 119.8 K and the dipole moment of the solvent is 1.36 deb ye. The 
Lennard-Jones parameters are D = 3.405 A and E/k = 119.8 K. The x direction is along the line joining the two ions 

1.048 0.082 -3.449 1.353 c 0.2 -2.014 + 0.2 -1.502 

1.309 -0.020 -2.211 1.290 * 0.3 -0.941 + 0.3 -1.845 

1.571 -0.00 1 -!.535 1.014 c 0.2 -0.522 f 0.2 -2.152 
1.834 -O.c!lo -1.126 0.427 r 0.16 -0.699 2 0.16 -2.430 

TO90 -0.000 -0.861 0.327 i 0.15 -0.540 + 0.15 -2.528 
2.353 -0.000 -0.687 0.282 c 0.20 -0.402 f 0.20 -2.540 

0 0 0 0 -2.569 

changes from 1 .O u to 2.0 cr and then perhaps mare 
slow:y beyond rob = 2.0 17. That is to say, our results 

do not exclude the possibility of a second region 
beyond r 06 = 2.0 (3 where the average energy changes 

much more slowly with the interionic distance until it 

reaches the limiting energy of single ion at r,, = m. 
An independent calculation of the potential of average 
force of two ions in a hard-sphere dipolar solvent has 

been completed recently by Patey [9]. 
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