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Three-body free-energy terms and corresponding © effcctlve orientation-independent electrostatic potentlals

for polar fluids and ionic solunons are given.

1. Introduction

The purpose of this note is to give the dominant
three-hody contribution to the Helmholtz free energy
of polar fluids and ionic solutions. As discussed else-
where [1,2] *¥, these three-body terms have to be
taken into account in'any adequate treatment of the
polar-fluid problem, and they are likely to be equally
important in the jonic solution problem as well,

. It is often convenient [6-8] *** to consider the free
- energy of a system that contains osientation-dependent

. pair forces in terms of a thermodynamically equivalent

-system with onentatxonal-mdependent forces. In the
‘latter system there will be n-body potentlals nz=?2,
and our results here also.give these potentials (to-

" lowest order in the appropnate multlpole moments) -
forn= 3 as well as the free energy 1tself Because they .

l’ermanent address. Department of Mechamcs, State
Umverslty of New York Stony onok New York
© 11790, USA.. ’

Mome Carlo studies supportmg the conclusrons ot‘ xef L

[2] have been reported by Patey and Valleau [3], by
McDonald [4],and by Weiss-and Verlet [S5}.- ..~ = =
* More recently, one of | us has used an ef{ecnv&potentlal R

: formahsm to treat the cntrca! behav:or of polar systems,—‘: T :

- 181

' '7\1("_"(

S XS,m(o ¢'I)s,m af' bsl'

fwhere lk zs detemzmed by the _ntegers (
m <mm(7 i 4) the sum over m extends over the:in:
| tegers fron

are equivalent (rather than actually equai) to the po-
tentials among triplets of particies, we refer to these
as effective electrostatic 3-body. potentials. To the - -
lowest orders considered here, they are just the. elec-' .
trostatic potentrals themselves, integrated over onen- _
tations. o
In the thermodynamic perturbatlon theory ('I‘PT) .

developed by Pople [10], Zwanzig [11], and ourselves .
[1, 8, 9] the potential energy of interaction is - .
written i in the form .

W x) = vo(r)-l-E)\kw( x.')- xk >0, (11),\_

‘ where followmg Pople we may expand )\kw(x,, x]) m
" ‘terms of surface harmcmcs, provrded the molecu.es
-have axml symmetry Accordmgly o )

i x ) 41rzz EX"'I"’()’)

I.

iy I])

mm( I)) to +mm(l,l,) and
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angles (87, ¢¥) and (8" of i) determine the orientation
of the molecular axes at i and J, respectively. For the
molecule ¢ the polar axis is assumed to be directed
towards f and for molecule f it is directed towards I.
The surface harmonics defined below follow the
Darwin convention

372
S1(0,9) = [%%%’%LL} P}m’(cosﬂ) i
{1.3)

where
1.4

Ity (1—~x2)imli2 qlrimi(x2_ 1)
PI (x) =

21n dx{tim

{with m]<7) in which we have written 9:—*9? and
¢-—¢‘«’ for convenience. The coefficients

Xl () in (1.2) are related to the electric moments
situated at (r;,r;) and follow the symmetric relation

XUlm () = Xty | (1.5)

2. The three-body terms

The lowest order three-body contribution to the
fre= energy in the perturbation theory for polar flsids
and ionic solutions has the form [1, 8, 9}

ffg&s(’u*"xs"za)“(”12”23»’13)‘3’2‘*’3 > @

where g0(ry5,713.753) is the three-particle distribution
function for the reference fluid, and u{r)5,r23.7y3)
is the “effective three-body potential™ given by

X wyq(xy,xy) Wyq(X5X,) dw‘dwzdw:; s 22

where x; =(#;, w;), and wy,, wy3 and w3 are deter-
mined by the electric moments of the molecules situ-
ated at (ry, 7, r3) in the prientations (w; , w5, w3).

T To be more precise, in the infinite volume limit, eq. (2.1)
gives the freeenergy contribution only when the wy of
{2.2) are such that (2.1) remains finite. This will not be the
case fot the triplet of chasges or for the charge~charge—
dipole term. In the former case, part of the three-body
term contributes to the “ring term” of 013 /T2 while
the rest is given with the Urscll function k323 instead of -
2523 in (2.1), as first discussed by Stell and Eebowitz {12].
A similar result holds in the mixed charge—dipole case.
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In terms of Pople’s expansion, u(ry4, r13, rg3) may
also be written as

ZZE Xlllznl(r )XI 13??1 (r )sz ym? (723)

m m m

s

xch, c’;_l e Co » 23)
where

13 .13
Choe= [S4m@1010)8, . 01,61 do, , (2.4)

2t 21 23 .23
mm -fslzm (8 95 )Slzm"(ez -9, )de (25)
and

mm‘ = fSI m'(e ,¢§1)8,3m,.(932,¢§2)dw2 " (2'6)

The difficulty with the angular integrations in (2.4)
to (2.6) is that in each of them the polar axes are
pointing in different directions. However, by a well-
known theorem of surface harmonics [13], we have,
for example, in the case of (2.4), the relation

Sﬁm(e; 2) E lt,mslln(gl ’¢l )= 2.7

whete the coefficients DI1 are the coefficients of
the rotation matsix whxch appear In the theory of
anguiar momentum [13]. By using the orthogonality
relation

J‘Sz,n(all3’¢}3)slim'(9113"?ig)d“’ 156, _mr 28

which applies to the product of surface harmonics
defined with respect to the same polar axis (13),
we have

! = i
Cn; E nm n ~—-m' Djm‘,m : 29

Since the elementlel ‘are known {subject to minor
differences in the convennons used in defining surface
harmonics) the C, mm » €tG., are also known, which
allows us to calculate the three-body potential |

u(ry,, r23,r13) In the case involving quadrupolar
terms, the determination is greatly facilitated by :
making use of previous work of Bell [14] on three-
body dispersion forces, and our problem is reduced to -
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the special case in which the molecular centers are
placed in a straight line in the sequence 1-2-3, when

U(ry,iry3.r13) = Z_Z, XM X" )

X X1213m(’.23) (__l)lz+|m| , (2.10)

where [ = min(l}, I3, 13). Using the various X'dm iy
for interactions between dipoles and/or quadrupoles
{107 the following explicit relations for the linear
configurations are easily obtained.

(a) For the triple-dipole term [}, =y ={3 =1
dpp =4 33 (2.11)

(b) For the dipole—dipole—quadrupole term,
1y =1;,=1,13=2, when the dipole is placed between
a dipole and quadrupole in a straight line,
ippq=~H5u' 0733 13 - @12
If the quadrupole is placed between the dipoles, the
sign in (2.12) is reversed.

(c) For the dipole—~quadrupole—quadrupole term,
Iy =1, I, =13 =2 when the quadrupole is in the
center, and

4.4 -5
Bpoq = 204 g iy - (2.13)

The sign of 4 Upqq is reversed if the dipole is placed
between the two quadrupoles.

(d) For the triple-quadrupole term, 2, =L, =13=2
and

- 6 ~5 -~
g =803 ’135 ’235 (2.14)
From Bell’s work on the three-body dispersion poten-
tials we know that the three-body electrostatic poten-

tial for molecules in any configuration must have the
form

u(r12’r13’ 23) Z(u,0) W(rlz,r13,r23,0ll,a2,z‘3)
. 2.15)

where ¢, , &y, @5 are the interior angles of a triangle
with sides 712, '3, F23. In (2.15) the geometrical
" factor ¥ is known for TD, DDQ, DQQ and TQ inter-

_actions while the interaction constant Z(u, @) has yet .

to be determined. Accoarding to Bell [14],
‘ 3 -3 -

Wrp = [(1¥3cosa cosa, cqsq3)] TyaTa3 T 13 2. 16) .

v WDDQ‘ = \%’V(-chosqf—?_;s cos'3cx3)i T
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Upc =€ 9233'12’13 3> :
‘where g is the charge on the ion at the: ith vertex. )

- the charge—dlpole (Xﬂlo(r)) and charge-—quadrupo\e
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+6(3+5 cos2a) cos (o —a,)] rl'?_:‘r23 r13 , (217)
Wpag = [3(cosa; +5 cos3a,)
+20(1—3cos 20,;) cos(@,—23)
+70cos 2(e,—a3) coso 15 '2;’135 s (2.18)
WTQ = [-27 + 220 cos; cosa, Cosay
+490 cos 2a; cos 2a, cos 20y
+175{cos 2(a; —,) + cOs 2(ety—q)

+ cos 2(113-—0:1)}] r1_~,5r235r135 s (2.19)

where we have absorbed in the Z’s all the numerical

" factors in Bell’s equations for the W’s.

Since the linear configuration 1—2—3 corresponds
to a; =3 =0, and a; = 180°, it can be verified by
comparison of (2.15) (containing the appropriate
geometrical factors) with (2.11) to (2.14) that

ZTD ='é'1~16 > ZDDQ =-2%'6'H4 92 N

Zpoo =6, Zyo=ws8S . (2.20)
Combining (2.20) with the explicit forms for the
geometrical factors in (2.16) to (2.19) we arrive at
the complete expressions for the various electrostatic
three-body potentials. For example the expression
for the electrostatic tripole-dipole potential is

Usp =9p6(1 +3 cosa, cosa, cosoz_,‘)rl_23r'2'_~;:'r'l'33 .

@21)

which agrees with an earlier derivation of this term -
by Linder [7} who used a reaction field technigue.
As far as we know, complete expressions for the -
other electrostatic three-body potentials have not
been given before. :
For an ionic solution in a solvent consisting of
polar molecules (for a review, see ef, {15]) ws have -
computed the various triplet terms involving charge
(C), dipole (D) and quadrupole (Q). From elementary
considerations the triple-charge term (urc) is [1-2]‘

2 21, ~1 ~1 - (2 22)

Thie others can be derived from (2. 3) if we recogmze
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(X 020(p)) interaction coefficients to be e; yl\/§r2
and e; 6//5r3, respectively. Then using (2.9) and
the relation

D! (@ = [an/(U+1)]V2S, _, («.0), (2.23)
we find, in obvious notation, that
ucep =¥e] 37Ty 13Ty cosay (2.24)
" —2.2,4-2-2 -3
Hcpp TICIE N1a T3

X [cos (ay,—a3) +cosa, cosay) , (2.25)

Uecq = et 3 0°ry iy 143 c0s203] L (2:26)

e 22022 -3 -4
ucpo =Poeiut 0% rilrs

X [cosay(1+3cos2ay) + 2sina, sin 233] , (2.27)
e = 2o e% 94"23 rf:? rgjs [3(1 +cos2a, cos2a,)

+ 16cos 2(a,—a3) + 5(cos 2a, +cos 2a;)] . (2.28)

Eqgs. (2.24) to (2.28) are consistent with the inter-
action energies which can be obtained directly from
(2.10) for the different possible linear configurations.
We have not found these expressions in the literature
of ionic solution theory, although their fundamental
nature makes it possible that some of them have al-
ready been derived in another connection.

The work reported here was motivated by recent
progress in the perturbation theory of polar fluids
[1, 2, 8, 9). It has already been demonstrated that
the electrostatic triple-dipole term makes a significant
contribution to the free energy of a dipolar system
[1, 2] and that for some molecules similar contribu-
tions involving quadrupolar interactions are likely (1].
We further anticipate that effective many-body inter-
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actions among ions, dipoles, and higher multipoles
will make non-negligible contributions to the free
energy of jonic solutions.
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