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We study the structural and thermodynamic properties of electrolytes in which the association
between oppositely charged ions (A" + B~=AB) is represented by a sticky electrolyte model
{SEM) which allows positive and negative ions of diameter ¢ to be bonded at a distance L<o/2.
The model is solved for a 2-2 electrolyte at concentrations up to 2 M and for L = ¢/2 using the
hypernetted-chain (HNC) approximation for the correlation functions within the spherical core
and the mean spherical (MS) approximation outside. The number of AB dimers at a separation L
is found to increase with concentration while there is a reduction in the number of contact ion
pairs below that predicted by the restricted primitive model (RPM) from which stickiness is
absent. The structural and thermodynamic properties of the SEM and RPM prove to be
significantly different and sufficiently interesting to justify future applications of the SEM to
molten salts and molecular solvents, especially if the ion~ion interactions can be treated with
greater accuracy. The equilibrium properties of the fully associated system of extended dipoles
with charges separated at a distance L = 0/2 are also given in the mean spherical approximation.

I. INTRODUCTION

In a series of papers,’”> Cummings and Stell have dis-
cussed a novel analytic approach to the study of chemical
reactions in nonideal systems; statistical mechanical studies
of chemical bonding have also been reported earlier by An-
dersen® and Héye and Olaussen.* Cummings and Stell stud-
ied the simplest association reaction’

A+B=AB (L.1)

by considering a model equimolar mixture of A and B atoms
in which the three pair potentials @, , (7), ¢ ,5(7), and ¢gg{7)
are given by

Sanlr) = dpplr) = ?'<C'}, (1.2a)
=0 r>c
dasir) =€, O<r<L —w/2
= —€ L—w/2<r<L+uw/2 ’ (1.2b)
= €, L+w/2<r<o
=0 r>o

where ¢, is the height of the potential mound which models
the repulsion between the unlike species atoms and ¢, is the
depth of a deep attractive well of width w centered at inter-
particle separation L. As argued in detail in Ref. 1 [referred
to throughout this paper as I, with Eq. (ij) from I being
denoted by (1.i.j)], the pair potentials (1.2) define a mixture in
which type A atoms can “react” with type B atoms to form
AB diatomics when a suitable definition for the existence of
AB pairs is chosen: an appropriate such definition studied in
1 is to consider two atoms as “bound” into a diatomic if the
interaction energy is large and negative, and L + w/2 <o0/2.
The pair potentials {1.2) exhibit the property of steric satura-
tion,*’ i.e., given the above definition of binding, each A and
B atom should belong to ar most one diatomic molecule.
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By considering the Hamiltonian model (1.2) in the limit
w—0, €,—»w while holding the second virial coefficient
fixed, Cummings and Stell were able to solve the Percus—
Yevick (PY)® approximation analytically. They showed that
when ¢,/ky T (where kj is Boltzmann’s constant and T is
absolute temperature) is greater than ~ 3, the results for the
mass action association constant k& defined are qualitatively
and quantitatively close to those for €,— o0, a limit in which
the analysis becomes considerably simpler and the definition
of associated pairs is conceptually unambiguous. The mass
action association constant & is given by

k =pas/PaPs> (1.3a)
where p, 5 is the number density of AB dimers, defined by
L +

Pap =pA0pBOf _8an (r) dr,

L

{1.3b}

wherep;, po (i = A,B) are the monomer density and the total
density, respectively, of species i, and g,p(7) is the distribu-
tion function for the pair AB.

In this paper, we turn our attention to the problem of
ion pairing in electrolytes by studying the association reac-
tion

A*+B~" = AB (1.4)
in a continuum dielectric solvent. The prototypes of the pair
potentials assumed are given by

Panlr) =dpp(r) = r<o
e’ ) {1.5a)
= — r>c
€r
daplr) =€ O<r<L—w/2
=—€ L—w/2<r<L+w/2
=€ Ltw/2<r<o > (L.5b)
&
I e —— r>c
e€r
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where € is the dielectric constant of the (continuum) solvent
and e is the magnitude of the charge on the ions. The pair
potentials (1.5), which are shown schematically in Fig. 1,
make it clear that we are studying a symmetric electrolyte
(1-1 or 2-2) for which electroneutrality demands that an
equimolar mixture of ions be considered. We discuss the so-
lution to this model for electrolytes in the limit when the
width of the well w—0 and the height €, and the depth ¢,
both tend to infinity. Unlike the uncharged system studied
by Cummings and Stell,"*> however, we employ the hyper-
netted-chain (HNC) closure for the correlation functions
within the spherical core of diameter o and the mean spheri-
cal approximation (MSA) for the essentially electrostatic
part of the correlation functions outside the core diameter.
The Hamiltonian model (1.5) becomes identical to the re-
stricted primitive model (RPM) for electrolytes when the
well is removed (w = €, = 0) and ¢, is maintained at infinity.

The RPM for the electrolytes, which has been the sub-
ject of extensive study, has been reviewed by Friedman,”
Rasaiah,® and, more recently, by Hafksjold and Stell,'° and
is defined by the following expression for the pair potentials:

Panl) =dpp(r)= 0 r<o
e’ , (1.6a)
=— r>0
€r
$aplr) = r<o
& . (1.6b)
= - = r>0c
€r
A
Bpnr)
|
I
|
| -
g r
|
§
Dpglr)
_62__ -
>lwie

FIG. 1. The pair potential for the sticky electrolyte model (SEM) studied in
this paper, and defined by Eqgs. (1.5). The model parameters used are
w=0.10, €,/kp = 4000 K, and L = 0/2 for a 2-2 electrolyte (e = 2 esu) in
a solvent of dielectric constant € = 78.358.

The model has provoked a great deal of study over the years
for a number of reasons, the foremost being that it is a con-
ceptually simple prototypical model for electrolytes that
possess two features of such systems: a harsh repulsive core
at sufficiently short separations and a Coulombic interaction
which is asymptotically correct at large separations. The
most accurate integral equation approximation for the RPM
is the hypernetted-chain approximation (HNC), and consid-
erable effort has been expended over the past decade in ob-
taining solutions to this approximation numerically.''-'¢
The mean spherical approximation (MSA)" is also of con-
siderable interest for this model since it was shown to be
analytically solvable by Waisman and Lebowitz.!® The ex-
tension of this analysis to ions of arbitrary sizes by Blum'®
enables the thermodynamic properties of low molarity 1-1
electrolytes to be fitted quite accurately and routinely.?

When the charges on the ions are increased, however,
even the hypernetted-chain equation fails to provide a com-
pletely reliable description of the equilibrium properties of
2-2 electrolytes at low concentrations. This failure is accom-
panied by a dramatic rise in the magnitude of the pair corre-
lation functions at contact, g, _{o), between oppositely
charged ions,'® a clear manifestation of the tendency to form
ion pairs. At a concentration of 10™* molar, e.g., g, (o} is
nearly 715 for a 2-2 aqueous electrolyte solution at 25 °C
when the system is treated according to the RPM. The prob-
lem of highly charged electrolytes at room temeprature, or
equivalently moderately charged ions at low temperature or
in solvents with low dielectric constants—the relevant pa-
rameter in the RPM is e?/(ek , To)—is the problem of treat-
ing ion pairing and more complex association effects. The
appearance of a low-density phase transition for ionic sys-
tems below a certain critical temperature?! has been dis-
cussed recently in terms of this tendency to ion associ-
ation.”?? One example is the work of Ebeling and Grigo,?
which is a modification of the classical Bjerrum theory?*?
with the free ions treated according to the mean spherical
approximation and the equilibrium constant for association
defined by splitting the second virial coefficient arbitrarily
into hard sphere, long-range, and bound parts. The ratio of
free ions to ion pairs is obtained by minimizing the free ener-
gy. All of this work and recent extensions to the hypernetted-
chain equation® treat the ions in the RPM. Our discussion,
however, applies to a different Hamiltonian model which
includes “stickiness” between oppositely charged ions lead-
ing to association effects quite distinct from those expected
in the RPM. Since the free ions of our system are treated in
the MSA, a comparison of our results with the correspond-
ing MSA calculations for the RPM should provide an indi-
cation of how stickiness or bonding between oppositely
charged ions affects the thermodynamic and structural
properties of the system.

The definition of ion pairing that we use in our calcula-
tion of the equilibrium constant corresponds exactly to the
definition of dimerization used in I for the corresponding
uncharged system, with L = ¢/2 in Eq. (1.3b). These dimers
are not the contact ion pairs, at r = o, referred to earlier in
this section nor do they correspond to the definitions of ion
pairing introduced by Bjerrum.?* Accordingly, the associ-

J. Chem. Phys., Vol. 83, No. 1, 1 July 1985

Downloaded 05 Jun 2004 to 130.111.64.68. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Lee, Rasaiah, and Cummings: Association in electrolytes 319

ation constants & that are calculated in this paper are not
strictly comparable to the association constants often dis-
cussed in the electrochemical literature.?® By using the same
definitions of p, and &k for the charged and uncharged sys-
tems, however, we can determine how these quantities are
changed when the system is charged. Conversely adding
stickiness to the interactions already present in the restricted
primitive model for electrolytes produces changes in the
number of contact ion pairs, which can aiso be calculated by
us. Our analysis also provides the equilibrium properties of
the fully associated system of extended dipoles in the mean
spherical approximation for L = 0/2.

This paper is organized as follows: Section II contains
the details of the Hamiltonian models employed, the approx-
imation used and the analytic solution using Wiener—Hopf
factorization.?”® Results for the structural, association, and
thermodynamic properties are presented and discussed in
Sec. III.

Il. FURTHER DETAILS OF THE MODEL AND ITS
ANALYTIC SOLUTION IN THE HYPERNETTED-CHAIN/
MEAN SPHERICAL APPROXIMATION

We now consider the limiting process w0, €,, €,
more carefully. When we begin by taking the limit €,— oo for
the unlike pair potential (1.5b), we are led to consider the
second virial coefficient B, .5, defined by

Buns = — (1/2)[Fxolrki, @.1)

where f;;(r), the Mayer f function is given by

Sylr) =exp[ — @, (r)/ky T} — 1.
In this limit, B, .5 is given by

3
BunolT) = 227 —2n(Lw+ L) expler/ks T)

— Zﬂfw{exp[ez/(eky Tr)] — 137 dr.
(2.2)

In the limit €,—c0, w—0, we follow Baxter®® and define
another Mayer f function

= -1+ —£—5(r—-L) O<r<o
127

= —1+exp[e*/leksTN] r>0 (2.3)
with second virial coefficient
2o’ 2L 3
BE.plr) = -
2,AB (7) 3 127

- Zﬂfw{exp[ez/(ek,,Tr)] —1}Adr. (2.4)

The constant 7 is obtained by equating B¥,z{r) and
B, 4p(T):
L 3
T= mexp( ~ &/kgT). 2.5)
Thus, in the computations to be reported in this paper, we
will consider the Hamiltonian model for which the Mayer
function is defined by Eq. {2.3) to be an approximation for

the model (1.5} in the limit €,— 0. By choosing fixed values
of €,, w, and L, we find the temperature dependence of 7
from Eq. {2.5).

The integral equation approximation to be used is de-
fined in terms of the radial distribution function g;(r) (pro-
portional to the probability density of finding ions / and j
separated by distance r), the total correlation function 4,(r)

= g;(r) — 1, and the direct correlation function ¢, () defined
by the Ornstein—Zernike (OZ) equation®! for mixture of m

species
m =i+ 3 puo [eutdhylir—siids, 9

where p,, is the fotal number density of species k ions (i.e.,
counting free ions as well as ions associated into pairs). The
HNC approximation® is given by

c;(r)= —PBo;lr) + hylr) — In[1 4+ hy{r)] 2.7
while the MSA for systems with hard core potentials is given
byl7

hyin= —1, r<oy,

c(r)= —Bdylr), r>oy (2.8)

where o; is the diameter for the hard core interaction
between species / and j ions and 8= 1/k,T. (In the case
under consideration in this paper, ¢; = 0.) For our model,
we propose a hybrid approximation obtained by using the
HNC approximation inside the core {r <o} and the MSA
outside the core (> o). Thus, for our binary mixture of A
and B ions of equal diameter we have

ci{r) = —B;(r) + hy{r) —In[1 4+ hy(r)], (2.9a)
c;lin) = —PBir), r>oy {2.9b}
which we refer to as the hypernetted-chain/mean spherical
approximation (HNC/MSA). Equation (2.9a) implies that

h,g(r) contains a delta function at r =L, so that in the
HNC/MSA,

r<o;

AL

hapl)= —1+ I—Z-G(r—-L), O<r<o, (2.10a)

haalr)=hgglr)= -1, (2.10b)

The parameter A which measures the extent of associ-
ation between oppositely charged ions is related to the pa-
rameter 7 (a dimensionless measure of the temperature 7"and
the well depth ¢} through Eq. (2.9a). The average number
{N ) of ions “bonded” to a chosen ion is given by

L+ L 3

(N) =pao 8aplndr =194 ("'—) s

L o
where 7 = 7p,,0°/3 and we expect O0< (N )<1.

Thus, the mathematical problem to be solved consists
of the mixture OZ equation (2.6} for m = 2 species subject to
the closure {2.10) inside the core {7 < o) and {2.9b) outside the
core. As we shall see, this problem has some features similar
to the problem solved in I, and for notational continuity with
that paper, it is useful to label A (B) ions as species 1 (2)
particles. For the equimolar { p,, = p,o = p/2) associating
electrolyte, we can define the sum (§') and difference (D ) cor-
relation functions by

O<r<o.

(2.10¢)
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hs(r) = hia(r) + A7) , hp(r) = hialr) — A7)
2 2
(2.11)
and similarly for cs(r) and ¢, (7). The OZ equations for the
mixture are then found to be equivalent to the decoupled
equations

hslrl = st +p [estohsr = sds, (2.12)

holr) = eplr) — pfcu sV (r — s))ds, (2.12b)
subject to closures

ho(r) = — 1+ %5(r—-L), 0<r<o, (2.13a)

cs(r)=0, r>o, (2.13b)

hp(r)= i—i&(r~L), O<r<o, (2.14a)

ep(r) =/ (ekp Tr), r>o. (2.14b)

We limit our attention in this paper to L = ¢/2 and consider
the sum and difference equations separately. For this choice
of L it follows from Eq. (2.10c) that (N } = 54 /8.

A. The sum equations

Since from Eq. (2.13b) the sum direct correlation func-
tion cg(r) is zero beyond r = o, Baxter factorization of the
OZ equation (2.12a) is straightforward, yielding?’

rhlr)= a3t + 2mp [ dtasler = thhslir =),

(2.15a)

restn) = — a5t + 2ap [ drasle—rigie), (215
where g(r), the Baxter ¢ function, is zero for 7 <0 and r>o
and g%(7) is the derivative of g(r) with respect to ». Applica-
tion of the closure condition (2.13a) on 0 < 7 < o results in the
following differential-difference equation for g¢(7):

g5( +p[gs(r + 0/2) —gs(r — 0/2)] + 'l‘: 8(r — 0/2)

=ar-+b, (2.16)
where

2
_ 2mpAL® _ Tpo A , (2.17)
24 48
a=1-— 27pf gs(t)dt, (2.18a)
0

and

b= 21Tpf 1gs(t)at. (2.18b)

(o]

As discussed in detail in I, the solution to Eq. (2.16) is given
by

a a v b

gl =~ Lr+ 2(1- )2

* r P 2/ p
+ A cos(pr) + Bsin(pr), O<r<o/2

= ir—{— —ai(l— l)+ i+A sin[ p(r — 0/2)]
p P 2/ p

— B cosf p(r — a/2)], (2.19)
where v = pog = 4 /8, 7 = mpo>/6 being the dimensionless

density, and a, b, A, B are obtained from the solution of the
matrix equation

ag/2<r<o,

a — A /96
b/o 0
M 4702~ i (2.20)
B /o? 0

The elements of the matrix M are found by substituting
Jf=linto Egs. (1.3.27). The solution to Eq. (2.20) is given by

o= 21'(_;?/1 T+ T3,), (2.21a)
% - Ai (_;_61 Ty + T32), (2.21b)
_;“2_ - Ai (_;?’1 Ty + 733), (2.21¢)
% _ _:‘. (%6’1. T+ T34). (2.21d)

In Eqgs. (2.21), 4 is the determinant of the matrix M and is
given by Eq. (LA 1) with f= 1; similarly, T',, T}5,...,T3, are
cofactors of the matrix M and are given by Eqgs. (LA 2)
through (I.A 9) with f= 1.

B. The difference equations

The Baxter factorization of Eq. (2.12b) with ¢, (r) given
by Eq. (2.14b) is somewhat more involved than that required
by the sum equations. Following the method of Blum'®*°
and Thompson,” it is necessary to write

e2 e~

ek, T r

and perform the factorization of [14 pCplk}]

= gp{k)§p{ — k) assuming no zeros on the real axis. The
function ¢, (k ) is the Fourier transform of ¢, (r) with z finite.
We then consider the limit z—0, and find in this case that in
real space,

ep(r) = cpir) + (2.22a)

gp(r)=M, r>c (2.22b)
with
e2 172
M= —( ) : (2.23)
mpeky T
Thus, defining g3 (7) by
go() =q5+M, r>0 (2.24)
so that ¢ (r) = O, r>»0, Baxter factorization yields
rhp(r) = g% (r) + 217le dt
0
X [M+q5()}(r—t)hp(lr — 1), (2.25a)
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rep(r) = qp(r) + 2mpMgp(r)

- 21er; dt ¢S (t)g%(t — 7). (2.25b)

Note that from Eq. (2.23),

M=_- X

2mp
where « is the inverse Debye screening length for the electro-
lyte defined by

4ar
2= 25
ekBTZe,px

In this expression, e; and p; are the charge and number den-
sity, respectively, of ion /. The functional form of g3, {r) is now
obtained by substituting the closure {2.14a) into Eq. (2.25a)
on the domain 0 <7 <. This yields the differential-differ-
ence equation

B —plabr +0/2 = ir /2] + 228~ o/
=pM[1—0(r—o/2)] —H, (2.26)
where H, a constant, is given by
H= — 277pr shp(s)ds {2.27)

and 6 (x) is the Heaviside function
f(x)=0 x<0,
=1 x>0
The parameter p is defined in Eq. (2.17) above. The solution
to Eq. {2.26) is found to be

Q)= — H + E cos( pr) + Fsin(pr), O<r<oa/2,
p

=M+ fl_ — Esin{ p(r — 0/2)]
P

+ Fcos[ plr —o0/2)], o/2<r<o. (2.28)

The boundary conditions on g3 (r) are
gplo) =0, (2.29a)
g™ /2)=gho"/2) + ig%z— . (2.29b)

These conditions result in two simultaneous linear equations
for E and F whose solution is given by

Fr= ﬁ: H'/v)2s —c)+ M'{c —s5)— v/127)s
o 1—3 ’
(2.30b)
where
v
= sm( ) cos( )
) {1_ . M

In order to determine the parameter H, it is necessary to
consider the integrated form of Eq. (2.252a) given by

T = = gpln) + 2mp | “draolt) Tlr =]} (231
where

J{rn= f shp(s)ds. (2.32)
From the definition of H, Eq. (2.27),

H = —2upMJ (o) = «J (0). (2.33)
Now, it follows trivially from Eq. (2.14a) that

J(r)=J(0), 0<r<o™ /2,  (2.34a)

=Jo)=J(0)~ 2=, ot/2<r<o.  (2.34b)

2mp
Additionally, the Stillinger—Lovett zeroth moment (elec-
troneutrality) condition®? can be written in terms of J (r) as

Tyt = ——. (2.35)
o 4mp
Thus, evaluating Eq. (2.31) at » = 0, we obtain
J0) =~ [43(0+ M ] +2mpbt [ e J 0
0
+ Zﬂpf dtgp(tV ()
(4]
M
- - [BO+M]+
a/2
vamfs0) @+ @[ argel,
0 /2
(2.36)

where use has been made of Eq. {2.35). Evaluating the inte-
grals in Eq. {2.36} and making use of Egs. {2.30), {2.33}, and
(2.34), we obtain the quadratic equation for H:

, _E
E'== gzpil-cw%{c—u 4”"M(—3+3c+s)]f1
p
_ H'/V)2e+s— 1)+ M'(1 —c—3s)— (v/129)c + [ pll —¢) + mpM (5 — 4c — 35)]M = 0. (2.37)
1—s The requirement that H—0 as p'/>M—0 dictates the choice
(2.30ah of the root in Eq. (2.37):
H= (2~C)+2K(—3+3C+S)/P—'{( —C} -—4!((—6 —c+ 2~ 2S+CS)/p}”2 239
167p(1 — c)/p? )
A parameter similar to H arises in the analytic solution of the (1 +x0) — (1 + 20)"/?
MSA for the RPM15-2%; H (RPM) = 2mp0? (2.39)
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and, as required, the expression for H given in Eq. (2.38)
reduces to the RPM result (2.39) in the limit A—0.

C. Determining the parameter 1 and the mass action
association constant

As aresult of the analyses of Secs. IT A and II B, all the
parameters in the analytic solution are now determined as
functions of the temperature-dependent parameter 7, re-
duced density  and the parameter A which determine the
equilibrium mass action association constant. To specify the
parameter A as a function of 7 and 7, it is necessary to apply
the closure (2.9a) inside the core. Defining y,,(r) by

812(r) = exp[ — B 15(r)] y12(r)

and using Eqgs. (2.3} and (2.10a) at r=L
quite generally,

At =y,(072), (2.40)

where 7 is defined by Eq. (2.5). As p—0, y,,(r)—1 so that
A—1/7. The HNC closure (2.9a) implies that
Iny,(0/2}) = hy,(0/2) — ¢1,(0/2). (2.41)

Writing this in terms of the sum and difference equations
and substituting into Eq. (2.38) leads to the relationship
between A and 7 in the HNC approximation which is given
by

AT = exp[hs(0/2) — cs(0/2) + hplo/2) — cpl07/2)].

=og/2, we find,

(2.42)
We find from our analysis that
hg(o/2) — cslo/2)
2a a? 3q? ab’
= —14 — 4+2v4' - 24| — — — — —
v ”l 87 27
_A'b 5 B'b (10
v
A'a B'a

___1_ 25 — ==
+ (1—c+ vs) + "

X(2—2c—s+vc— %)+ A—4—(v+sinv)

‘D "”2
+ _A_Zi. (1 —cosv)+ %— (v —sin v)] (2.43a)

and
hp(0/2) — cplo/2)

- 1217M’2+2vE’—2477[M (-H— +F)
v
Hl ”?2 ,
_H g Fer )+ By 4siny
v 4
ElFl F12

+ — 5 {1 —cosv)+ T(v—smv) (2.43b)

where ', A’, and B’ are the dimensionless quantities

b A B
b'=—, A'=>=, B'= =.
o o’ o
Thus, the analytic solution of the HNC/MSA for the asso-
ciating electrolyte reduces to the solution of a single nonlin-

ear equation for the parameter A. Numerically, we begin at
low density using a series expansion for A in powers of den-
sity and solve Eq. (2.42) at successively higher densities using
the bisection method.

The expression for the dimensionless association con-
stant K, when L = 0/2 which implies (N ) = 74 /8, follows
from Egs. (1.3a) and (1.3b) and is given by

k=X_-__™ (2.44)
o 24(1 — A /8)?

The parameter A is necessarily positive when the HNC/
MSA is used for the correlation function as described in our
discussion. If instead the Percus—Yevick approximation is
substituted for the HNC closure within the spherical core,
negative values of A, which are physically unacceptable, are
found to occur for 2-2 electrolytes at room temperature. In
the limit as 7—0, the mass action association constant re-
duces to its zero density limit, 7/(24r), denoted by K,. When
A =8/n and K = « the system is devoid of free ions and
contains extended dipoles.

Although it is customary to call K the mass action asso-
ciation constant, it is constant (dependent on temperature
but independent of density) only for an ideal system. The
equilibrium constant, which depends only on temperature, is
defined by Eq. (1.3a) with the densities p; replaced by the
activities a; of the reactants and products. Since ¢,—p; as
p,—0, K, is the equilibrium constant and K /K, measures the
deviation of the system from ideality.

D. Thermodynamic properties

We choose to calculate the thermodynamic properties
using the energy route, extending the methods developed by
Barboy and Tenne for the adhesive hard sphere model.*?

Starting with the expression

ex _ i “ aexp[ _B¢l_](r)]
BE/V = 2 B;jPinJ;

ap

(2.45)

for the excess internal energy E <%, and ignoring the tempera-
ture dependence of the dielectric constant,!* we find that for
our system

X yy(rAmr* dr

E*/N= — —/—% — —,
b 16 2

which, as expected, reduces to the energy in the MSA for the
RPM when A—0. The other thermodynamic properties are
given by the standard thermodynamic relations

il
BA ex ZBA ex,0+J(; Eex(Bl)dBl,

(2.46)

(2.47)
3 ex '
Bt = B — f SELE g,

40— lfaE“(B)dﬁ, (2.49)

(2.48)
p=1+ 22
P

and

BA“=N[lny, +(1—¢)], (2.50)

where 4%, p*, Iny, , and ¢ are, respectively, the excess
Helmbholtz free energy, the excess pressure, the mean ionic
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FIG. 2. The parameter A as a function of the electrolyte concentration c,, for
a2-2 electrolyte using the SEM. The temperature T = 298 K, the dielectric
constant € = 78.358, and the ionic diameter o = 4.2 A.

activity coefficient, and the osmotic coefficient, and the su-
perscript zero refers to our uncharged sticky reference sys-
tem at infinite temperature ( S = 0). Although the excess in-
ternal energy can be calculated directly, the other properties
must be calculated numerically since a closed form expres-
sion for A cannot generally be found.

However, when associdtion is complete (4 = 8/7) and
the system contains just extended dipoles, we find from Eqgs.
(2.38) and (2.46) that the excess energy E <%, excluding the
binding energy of the dipoles, is given in the MSA by

BE* - _ x(e; + ex — (¢ +¢x)'?) ’ (2.51)
Np 96(c, — 1)y
where N, is the number of dipoles,
¢, =2 — cos{1/2), (2.52)
¢, = 6[cos(1/2) — 1] + 2 sin(1/2), (2.53)

¢; = — 4{[cos(1/2) — 2] [sin(1/2) — 1] — cos¥(1/2)},

(2.54)
and x = xo is related to the dipole moment u = eo/2 by
x =Ko = Map/eky T)?u, (2.55)

where p is twice the density of dipoles and € is the dielectric

0-225 T , T
0-200 |-
0175 |
K/Ko x 102
0150 |-

0-125 -

0100

0-075
0-0

FIG. 3. The reduced mass action association constant K /K|, for a 2-2 elec-
trolyte as a function of stoichiometric concentration ¢, in the SEM

(T=298K, e = 78.358, and o = 4.2 A).
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FIG. 4. The average number (N ) of oppositely charged ions at distance o/2
from the center of a given ion for a 2-2 electrolyte in the SEM. The distribu-
tion functions at contact for oppositely charged ions in the RPM and the
SEM are also shown (T'= 298 K, € = 78.358, and 0 = 4.2 .&).

constant of the continuum background which is unity for a
vacuum.® Using Eq. (2.47) the excess Helmholtz free energy
A °* of this system is found to be given by
B(A x__ 4 ex,HD)
Np
_ 1
T 288cy(c, — 1)y
X [3es6:x + 6cs0x — 4(c} + x4 4} ],
(2.56)

where A *HP is the excess Helmholtz free energy of the hard
diatomic system.

lli. RESULTS AND DISCUSSION

The results of our calculations for the sticky electrolyte
model (SEM) using the HNC/MSA are presented in this
section along with comparisons against some of the proper-
ties of the RPM electrolyte using the MSA. We confine our-
selves here to studying only a 2-2 electrolyte at stoichiome-
tric concentrations ¢, (= p/2) ranging from 0.05 to 2.0
molar; the ionic diameter o = 4.2 A. The temperature is as-

s T T T
al- -
g9,ir)
2 _
HNC/MSAS
SEM

o I !

0 | 2 3 4

r/d

FIG. 5. The pair distribution function g, _ (7} for oppositely charged ions of
a 2-2 electrolyte at a concentration ¢,, = 0.0625 M according to two differ-

ent models—SEM and RPM (T'=298 K, ¢ = 78.358, and 0 = 4.2 ;\).
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2 ]
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SEM
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oO | 2 3 4
r/0

FIG. 6. The pair distribution function g, _(r) for the system depicted in Fig.
5 except that ¢,, = 0.5625 M.

sumed to be 25 °C and the dielectric constant € is taken to be
78.358 which is the value for water at this temperature. The
width w and depth €,/k of the sticky well are assumed to be
0.10 and 4000 K, respectively; the latter corresponds to an
energy of about 13k, T at room temperature (25 °C).

The parameter A and the ratio K /K|, are plotted against
the electrolyte concentration in Figs. 2 and 3. The average
number of oppositely charged ions distance L away from any
given ion (N ) = 54 /8 as a function of ¢, appears in Fig. 4
which also shows the distribution functions g, _ (o) for op-
positely charged ions at contact in the SEM and the RPM.
Although A decreases with concentration, (V ) increases to
the extent that 83% of the ions at a concentration of 2 molar
have formed dipolar diatomics for the model parameters
(€,,w) assumed in this study. The decrease in the number of
contact ion pairs, as measured by the difference between
g (o) for the SEM and the RPM, is apparently caused by a
depletion of counterions at the surface of an ion that is al-
ready bonded to an oppositely charged ion. In Figs. 5 to 7 the
distribution functions g _(r) for oppositely charged ions
calculated for the RPM and the SEM are plotted as func-
tions of 7, showing the pronounced differences in the struc-
tural properties of these two systems. The appearance of a
cusp at r = 30/2 is noteworthy, and Fig. 8 shows a maxi-

4 T T T
T i
g, () MSA-RPM
2 -
' HNC/MSA-N___—"
SEM

! !

° I 2 3 4

r/d

FIG. 7. The pair distribution function g , _(r) for the system depicted in Fig.
S except that ¢, = 1.0 M.
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FIG. 8. The distribution functions g, _ (r)and g, _(r} for a 2-2 electrolyte at
¢,, = 2.0 M using the SEM according to the HNC/MSA. All of the other

model parameters and solution parameters are the same as for the preceding
figures.

mum cusp in the distribution functions g , _ {r) forions of the
same sign at 7 = 3¢/2 in the SEM. This implies that positive
and negative ions have nearly equal probabilities of appear-
ing at the end of a bonded ion pair or dipole, and may be a
reflection of the failure of the MSA to differentiate strongly
enough between the two extremes, or it may arise from the
heavy shielding of ions at high concentrations which reduces
the effective charge. (The Debye length 1/x=<1.07 Aate,
= 2.0 molar for this system.)

Our calculations of the thermodynamic properties are
confined to the excess energy E °* presented in Fig. 9 in di-
mensionless units of Nk; T where N is the total number of
particles. The energy for the SEM is more negative than that
for the MSA because the energy of pair formation

— {N )Be,/2 overshadows the increase in electrostatic ener-
gy caused by the reduction in concentration of free ions due
to pair formation.

The results obtained for the sticky electrolyte model
(SEM), which mimics bonding between oppositely charged
ions in an electrolyte, are sufficiently interesting to justify

6 |
-gex s HNC/MSA -SEM
Nkgl
4 —
3 —
MSA-RPM
2 _
| i | !
0-0 05 1-0 15 2:0
Cst

FIG. 9. The excess energy E ° in dimensionless units of Nk, T as a function
of the electrolyte concentration c,, for a 2-2 electrolyte according to two
different models—SEM and RPM. All the parameters are the same as for
the preceding figures. In addition, de/dT is assumed to be zero.
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applications to other systems (molten salts, molecular sol-
vents) especially if better approximations (e.g., HNC) can be
employed for the ion—ion interactions. The atom-atom cor-
relation functions for the fully associated system of extended
dipoles, although not discussed in detail here, follow from
our analysis in Sec. II on setting v = po = 1.
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