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The solution to an integral equation [J. Zhu and J. C. Rasaiah, J. Chem. Phys. 96, 1435 
(1992)] for the survival probabilities in the Sumi-Marcus model of reversible electron- 
transfer (ET) reactions, in which ligand vibrations and fluctuations in the solvent 
polarization play important roles, is obtained numerically using a simple computer program 
suitable for use on a PC. The solutions depend on the time correlation function A(t) 
of the reacting intermediates along the reaction coordinate which is shown to be equal to the 
time correlation function of the Born free energy of solvation of these intermediates 
even in discrete molecular solvents provided its response is linear. This enables A(t) to be 
determined accurately from time-delayed fluorescence Stokes shift experiments or 
from dynamical theories of ion solvation; it is usually an exponential (Debye solvent) function 
of time or a sum of such exponentials (non-Debye solvent). The solutions to the integral 
equation, which can be obtained numerically for any given A(t), are found to predict the 
electron-transfer dynamics successfully over a wide range of model parameters. They can 
also be approximated by single or multiexponential interpolation formulas in which the 
thermally equilibrated rate constants are modified by a factor which reflects the relative 
importance of ligand (or inner-sphere solvent) vibration and outer-sphere solvation dynamics. 
The use of an effective longitudinal relaxation time in calculations of ET rates in 
solution is shown to be a poor assumption in some solvents. The theory is compared with an 
experiment in the inversion region, and its extension to include high-frequency vibrational 
modes that lead to an increased ET rate in other experiments is discussed. 

I. INTRODUCTION 

An approximate general solution of two coupled 
diffusion-reaction equations 

dPl/~r=[Ll(t)--kl(x)lPl+kz(x)P2, (l.la) 

ap2m= v,(t) -k2c4 ~P~+~,wJ, , (l.lb) 

describing the kinetics of reversible electron transfer (ET) 
reactions in solvents characterized by single (Debye) or 
multiple (non-Debye) dielectric relaxation times was de- 
rived recently. ip2 Interest in these equations goes beyond 
their relevance for electron transfer since they also describe 
the rates of many other reactions which are controlled by 
diffusive motion along the reaction coordinate x. Examples 
are the kinetics of rebinding carbon monoxide to heme in 
myoglobin,3 the rates of isomerization reactions,4 and tran- 
sitions between metastable states characterized by double 
(or multiple) potential-energy minima.5 The reactant de- 
cay curves display simple exponential or multiexponential 
behavior in different circumstances determined, for exam- 
ple, by the solvent viscosity. Moreover, the kinetic rate 
constants can, in appropriate cases, be correlated with the 
solvent relaxation times, the ligand vibrational frequencies, 
or the electronic coupling between the donor and acceptor 

‘)Permanent address: Department of Chemistry, University of Maine, 
Orono, Maine 04469. 

sites.‘-‘* The solutions to these coupled differential equa- 
tions, which show such diverse effects, and the methods of 
obtaining them, even in approximate form, are naturally of 
great interest to chemists and biochemists and forms the 
principal subject of this paper. 

In our studies, the survival probabilities of the reac- 
tants and products in the ET reactions governed by Eq. 
( 1.1) are obtained as the solutions to an integral equation2 
which is approximate except in certain limits when it is 
exact. However, the error in the integral equation outside 
these limits (see below) is small. Although the Laplace 
transforms of the survival probabilities are known, they 
can be inverted analytically only in special cases. A general 
method of solving the integral equation, which does not 
use an effective solvent relaxation time as an additional 
approximation,2 is desirable. In this communication we ad- 
dress this problem and show how the integral equation can 
be solved numerically using a simple program of a few lines 
suitable for use on a personal computer. 

On comparing our solutions to the integral equations 
with the numerical (finite-difference) solutions of the 
diffusion-reaction differential equations ( 1.1)) we find that 
the former is generally quite accurate and useful except 
possibly in narrow regions of solvent relaxation times and 
reorganization energies. This is fortunate because it is 
much easier to solve the integral equation numerically than 
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it is to solve the coupled differential equation from which it 
is derived. In addition, the numerical method used applies 
equally well to ET reactions in solvents with multiple or 
single relaxation times, thus providing a practical route to 
the kinetics of these reactions in a variety of solvents and 
different experimental conditions. 

Apart from our numerical studies we also derive new 
and improved single and multiexponential interpolation 
formulae for the survival probabilities in these solvents. On 
comparing our numerical and analytic results we find that 
the survival probabilities are in many cases well approxi- 
mated by these formulas in which the thermally equili- 
brated rate constants are modified by a factor that reflects 
the relative importance of inner sphere ligand vibration 
and outer sphere solvation dynamics for the ET rate. 

The connection between the rate of electron transfer in 
a solvent and its solvation dynamics is further clarified in 
this paper by relating the time correlation function of the 
Born free energy of the reacting intermediates to the time 
correlation function along the reaction coordinate. The 
equality of the two was shown earlier,2 within the context 
of linear response theory, for ET reactions in continuum 
solvents; its extension to discrete molecular solvents, which 
we discuss here, is an important generalization that is ex- 
ploited in our calculations of ET rates. These studies reveal 
that the use of an effective longitudinal relaxation time to 
describe the solvation dynamics of the reacting intermedi- 
ates in these ET calculations is a poor approximation in 
some solvents. 

In the model electron-transfer reactions considered in 
this study, P1=P,(x,t) and P,=P,(x,t) of Eq. (1.1) are 
the probabilities that reactants and products, respectively, 
at time tare in states characterized by a fluctuation x of the 
excess solvent polarization P”“(r) from its equilibrium av- 
erage P?(r) due to the charge distribution on the reac- 
tants, and k,(x) and k2(x) are the rates of the forward and 
backward reactions in these states. Here P”(r) =P (r) 
-P”(r), where P(r) and P”(r) are the total and elec- 
tronic polarization of the solvent, respectively. The fluctu- 
ation x, in the solvent polarization is defined byis 

PD(t) = =d In A(t)/dt (1.5) 
is a time-dependent diffusion coefficient, and 

A(t) = @x(t)c5x(0))/@x2(O)) (1.6) 

is the time correlation function along the reaction coordi- 
nate. In Eq. ( 1.6)) Sx( t) =x(t) -x0, where x(t) is detined 
by an equation analogous to Eq. ( 1.2) except that P”“(r) is 
replaced by Pex( r, t) and x0 is defined by 

xg=(4?r/c) 
s 

IPy(r)-P?(r) 12dr (1.7) 

in which P?(r) is the equilibrium excess solvent polar- 
ization at r due to the product charge distribution. 

Marcus’ and Hush’ in their pioneering studies showed 
that 

V,(x)=x2/2, (1.8a) 

V2(x>=(x-xo,2/2+A@, (1.8b) 

are harmonic free-energy functions. In subsequent devel- 
opments (Sumi and Marcus6 and Kestner, Logan, and 
Jortnerg ) , the vibrational contributions of the ligands were 
also included in the total free energies of the reactants 
(i= 1) and products (i=2) which are then given by6 

Vl(q,x) =aq2/2+ VI(X), (1.9a) 

V2(4,x) =4q-q0)2/2+ V2(x), (1.9b) 

where q is the vibrational coordinate of the ligands and 
a=po2 is taken to be the same for reactants and products 
(y is the reduced mass and w is the vibrational frequency 
of the ligand). In Bq. ( l.Sb) A@ is the standard free 
energy for the forward reaction ( 1 --f 2). 

The ligand vibrational motions, which are treated clas- 
sically in this model,6 are assumed to be much faster than 
the relaxation of the solvent polarization, and electron 
transfer can then take place at each value of x. This leads 
to the coordinate dependent rate coefficients6 

ki(x)=Vqexp[-pAe(x)] (i=1,2) (1.10) 

which appear in Eqs. ( 1.1) . Here 

x2=(47r/c) P’“(r) -P?(r) 12dr, (1.2) 

c= l/E, 2 l/es (1.3) 

in which E, and e. are the high-frequency and static di- 
electric constants, respectively. Both P”“(r) and P?(r) 
have contributions from the translation and rotation of the 
solvent molecules. It is assumed that the time dependence 
of the probability functions Pl(x,t) and P2(x,t) on the 
polarization fluctuations is determined by the generalized 
Smoluchowski operators6 

in which p= (kBT) -*, where k, is the Boltzmann con- 
stant, T is the temperature, 

AGT(x) = (l/2) bW4J (x--xd2, (l.lla) 

AGf(x) = (l/2) GW,) (=-x2J2, (l.llb) 

are the free energies of activation of reactants and prod- 
ucts, respectively, and 

.xl,=(a+A@)/(2ao)'", (1.12a) 

x2== (a+h@-2a,)/(2ao)1~2. (1.12b) 

In these expressions il. is the total reorganization energy 
which has contribution& ’ from ligand vibration 1, and 
outer solvent polarization ilo so that /2&lo+/2, and 

Jto=xg/2, (1.13a) 

;1,=a&2. (1.13b) 

The preexponential factor 

vq=ko[(~a~2Ta,)~1~2 (1.14) 
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in Eq. ( 1.10) contains the factor kc which is determined by 
electronic coupling between the donor and acceptor sites 
and other details of the electron reaction; e.g., by whether 
the reaction is adiabatic or not.’ The determination of k. is 
a quantum-mechanical problem, but it is treated as a pa- 
rameter in our calculations. 

Our main interest is in the rate constants and survival 
probabilities a(t) for the reactants and products which 
are related to the solutions of Eq. ( 1.1) by integration: 

Qi(t) = 
s 

a Pi(XJ)dX (i=1,2) (1.15) 
-co 

Assuming that the reactants are initially at equilibrium, 
our solution for the survival probabilities islP2 

QIW = lb--Q2(d, (1.16a) 

Q~(~)=~,/C~[~+~,,(~)+~,Z(~>I}, (1.16b) 

where Qi(S) are Laplace transforms of the survival 
probabilities and a,,(s) and as2(s) are the Laplace trans- 
forms of2 

’ 
(1.17a) 

2 

%(t) =kdl -A2A(t12)-‘” exp ~(x~,-xc)~ lt:llt) , 

(1.17b) 
respectively. The time correlation function A(t) appears in 
these equations together with the size of the reaction win- 
dow 

A=&/A (1.18) 

which reflects the relative contributions of the ligand vi- 
bration (or inner sphere) and outer sphere solvation to the 
dynamics of electron transfer and 

&.= Ski(x)exp[-~~i(*)ldx/I exp[--P~ib)l~~ 

(i= 1,2) (1.19) 

are average rate constants in the forward and reverse di- 
rections. Substitution of Eqs. (1.8) and (1.10) in Eq. 
( 1.19) and integration leads to 

kle=Yexp[ -p(n+AGe)2/4;1], ( 1.20a) 

he=he expW@O, (1.2Ob) 

where 

~=v&l.~/A]“~= (PA/27~)“~k~. (1.21) 

Taking the inverse Laplace transform of Eq. ( 1.16), one 
finds2 

Ql(t>=l--Qdt), 

s 

t 
B(t) =Q-- a(t--u)QAuMu, 

0 

(1.22a) 

(1.22b) 

where a(t>=al(t)+a2(t) in which q(t) and a2(t) are 
given in Eqs. (1.16). 

Equation (1.22b) is our integral equation2 for the sur- 
vival probability Q2( t) in which the kernel a( t-u) de- 
pends on the time correlation function A(t) along the re- 
action coordinate. For a Debye solvent, A(t) is just 
exp ( - t/TL), where rL is the longitudinal relaxation time, 
the diffusion coefficient D= l/(flrL), and Eq. (1.17) can 
also be written as 

ai(t)=kie+klT’ i c,iexp( --WTl) (i=1,2), (1.23) 
n=l 

where cn,i= 1 (U,,iI ki(x) Igi) 1 2, 1 U,,i) are the eigenkets of a 
harmonic oscillator with energy eigenvalues E,=u/T~ (no 
zero-point energy) and 1 gi) is the lowest eigenket (n = 0). 
Equation (1.17), with A(t) =exp( -t/~~), is equivalent to 
Eq. ( 1.23). It is obtained by observing that the adjoint of 
Eqs. ( 1.1) involves the Hamiltonian for a harmonic oscil- 
lator whose density matrix leads directly to Eq. ( 1.17). 
The details are discussed in Refs. 6 and 1 and the extension 
of the argument to non-Debye solvents is given in Ref. 2. 
The Laplace transform of Eq. (1.23) is 

asi =ki,+k,T* i CJS+En)-I (i=1,2). (1.24) 
n=l 

Long- and short-time approximations are readily derived 
from Eq. (1.23) or Eq. (1.24)-see the Appendix. The 
limiting solutions (Sec. II), a double-exponential approxi- 
mation and an interpolation formula (Sec. III) for Q,(t) 
also follow from the limiting forms or approximations to 
these equations. iI2 

For a perfectly symmetrical ET reaction (e.g., Fe+2 
+Fe+3-+Fef3+Fe+2) the inclusion of the reverse reac- 
tion only changes the rate constant by a factor of 2 in the 
regime where the survival probability shows a single expo- 
nential time dependence. The situation is not so simple 
when the time dependence is multiexponential or when the 
reaction is unsymmetrical and the standard free energy 
change for the reaction A@ is not zero. Theoretical calcu- 
lations of the ET rates for the forward and reverse reac- 
tions must also be consistent with the equilibrium constant 
for the reaction which is determined by A@. This serves as 
an important check on the theoretical approximations 
used. The theory and numerical methods described in this 
paper satisfy these expectations and also apply to electron- 
transfer reactions in solvents characterized by single as 
well as multiple relaxation times.” We note that the nu- 
merical and analytic solutions for the survival probabilities 
in reversible ET reactions described here also furnish the 
answers to a similar class of problems dealing with the 
kinetics of escape over a barrier between two harmonic 
potential wells. 

This paper is organized as follows: In Sec. II we dis- 
cuss the time correlation functions A(t) along the reaction 
coordinate and in Sec. III we summarize the exact limiting 
solutions to the coupled differential equations ( 1.1) and 
the integral equations. This is followed by a discussion in 
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Sec. IV of approximate solutions to these integral equa- 
tions for ET in Debye and non-Debye solvents. These sin- 
gle and double exponential interpolation formulas are ap- 
plicable in the regions between the limiting cases. The 
single exponential interpolation formula is also compared 
with the results of a recent experiment on ET in the in- 
verted region. The numerical solution to the integral equa- 
tion is described in Sec. V and our calculations are pre- 
sented in Sec. VI where they are compared with the 
solutions to the coupled differential equations which de- 
scribe this model. Extensions of the theory which lead to 
increased electron transfer rates when the model is modi- 
fied to include high-frequency vibrational modes of the ac- 
ceptor are also brielly described in Sec. V. The Appendix 
contains a comprehensive mathematical discussion of the 
long- and short-time approximations used in formulating 
the approximate solutions discussed in Sec. IV. 

II. THE TIME CORRELATION FUNCTION A(t) 

A major accomplishment of this paper is to show how 
the rates of ET reactions can be calculated for any known 
A(t) regardless of its detailed functional form. The time 
dependence of A(t) in many solvents is usually more com- 
plicated than a simple exponential function and is often 
represented as the sum of two or more exponentials. Before 
discussing the details we wish to comment on the relation- 
ship of A(t) to the solvation dynamics of the reacting in- 
termediates. We have shown earlier* that A(t) for electron 
transfer in a continuum solvent is identical to the time 
correlation function s(t) for the Born free energy of sol- 
vation of the reacting intermediates when a linear response 
of the environment to the charge is assumed. The extension 
of this proof to ET in discrete molecular solvents, which 
follows, also depends on the same assumption which is 
implicit in the theory of Marcus. 

As suggested by Marcus,’ the excess solvent polariza- 
tion Pex(r,t) may be considered to arise from effective 
charges 

eF”(t)=eT+z(t)(ei-eT) (2.1) 

on the ions, where e: and ei in Eq. (2.1) are the charges on 
ion i in the reactant and product states, respectively, and 
the switching function z(t) changes from 0 to 1 during the 
course of ET as reactants are transformed into products. 
The time variable in Eq. (2.1) was introduced by Hynes.” 
The ensemble average of this switching function is related 
to the time correlation function A(t). Assuming a linear 
response of the polarization to the charges, we have 

Pex(r,t) -P?(r) =z(f) [P?(r) -P?(r)]. (2.2) 

Since z(t) is proportional to Pex(r,t) it also follows from 
the definition of x( t), which is the analog of Eq. ( 1.2) with 
Pex( r,t) replacing Pex( r ), that 

z(t) =x(t)/xo . (2.3) 
Substituting this in Eq. ( 1.6) and recalling z(0) =0, we 
have 

A(t)=l-(z(t)). (2.4) 

TABLE I. Dielectric properties and relaxation times of a few solvents 
[from Ref. 17(a)]. 

Solvent TL (PS) TD (PS) 
Acetone 1.9 21.20 0.30 3.3 
Acetonitrile 1.8 37.3 0.2 4.0 
Dimethylsulfoxide 4.8 46.5 2.1 20.6 
N-methylpropionamide 6.0 163.0 5.0 125.0 
Propylenecarbonate 11.0 63.9 8.0 43.5 
methanol 5.6 33.7 9.2 55.6 
n-propanol 3.65 20.6 77.0 435.0 
Water 5.16 8.36 0.54 8.27 

The time correlation function of the Born solvation energy 
EB(t) is2 

S(t) = ([EBW -Ed WJ 1 1 

where 

)I( [EB(O) -EB( co ) I>, 
(2.5) 

Eg(t) = - (l/2) 
s 

D(r) P(r,t)dr. (2.6) 

Inserting this into Eq. (2.5), one finds, after subtracting 
and adding the electronic polarization P” (r) to the polar- 
ization factors in the numerator and denominator, that 

Ll- D(r)[Pex(r,t)-Pex(r,~)]dr L!?(t) = 

Ll- 

(2.7) 
D(r) [Pex(r,O) -Pex(r,a)]dr 

> 
Subtracting and adding Py (r) to the polarization factors 
in the numerator and denominator and making use of Eq. 
(2.2), we see that S(t) =(z(t) -z( co))/(z(O) -z(co 1). (2.8) 
Since z( CO ) = 1 and z(0) =0 in an ET reaction, it follows 
that 

S(t)=l-(z(t))=A(t). (2.9) 
This proves the equality of the time correlations func- 

tions for both continuum and discrete molecular solvents 
when the solvent response is hnear. Its importance-lies in 
the realization that A(t) can now be determined from the- 
oretical calculations of the solvation dynamics of the react- 
ing ion intermediates’ ‘-I5 and also from measurements of S(t) in time-dependent fluorescence Stokes (TDFS) shift 
experiments on solute chromophores’~‘* dissolved in the 
solvent. The latter provides an important link between 
TDFS experiments and the measured rates of electron 
transfer reactions in the same solvent. Computer simula- 
tions of the solvent dynamics also furnish an additional 
source of information and serve as an excellent testing 
ground for model theories. 19-24 

Measurements of the solvation dynamics from picosec- 
ond and subpicosecond time-dependent Stokes shift studies 
have shown that a simple exponential form for the time 
correlation function S(t) is the exception rather than the 
rule; the exceptions include acetone and surprisingly, ac- 
cording to some sources, the alcohols which are expected 
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TABLE II. Experimental salvation parameters [entries from Ref. 18(c)]. 

- Solvent Tl (PS) 72 (PS) Al A2 P (ps) 

Acetone’ 0.3 1 0.99 0.47 0.53 0.67 
Acetonitrile 0.27 1.05 0.73 0.27 0.48 
Dimethylsulfoxide 0.33 2.3 0.57 0.43 1.2 
Propylenecarbonate 0.43 4.1 0.46 0.54 2.4 
Methanol 1.16 9.57 0.40 0.60 6.2 
n-propanol 14.0 40.0 0.30 0.70 32.2 
Water 0.16 1.2 0.33 0.67 0.86 

‘Acetone is also well represented by a single exponential time decay of .S(t) with a relaxation time of 0.70 

to show the effects of hydrogen bonding.‘7(a)P18(c) The con- 
tinuum model with the phenomenological Debye form (see 
Table I) 

E(W) =E, + (Eo-E,Ml +iw7g1 (2.10) 

for the frequency-dependent dielectric constant leads to 

S(t) =exp( --t/rL), (2.11) 

where rL= (~o/E,,,)r~ However the same dispersion rela- 
tion yields a multiexponential form for S(t), with relax- 
ation times ranging from rL to rD, in the dynamical mean 
spherical approximation introduced by Wolynes”-‘5 for a 
dipolar hard-sphere solvent. Other dielectric response 
functions such as the Davidson and Cole-Cole functions 
also predict nonexponential behavior of S(t) in the dielec- 
tric continuum model. 

Careful measurements by Jarzeba et aZ.“(‘) have 
shown that the solvation dynamics in many solvents can be 
fitted to 

S(t)=Al exp(-t/T1)+A2exp(-t/T*), (2.12) 

where Al +Az= 1. The relaxation times r1 and r2 differ by 
almost an order of magnitude in some cases (e.g., propy- 
lene carbonate and methanol) but only by a factor of about 
3 or so in other solvents when a single exponential fit is 
reasonably accurate. The parameters for several solvents 
taken from their work and used in our calculations are 
collected together in Table II. In the case of acetone (see 
also Table II), a single exponential decay also provides an 
accurate fit. An effective relaxation time, defined by 

pL 
s 

Co S( t)dt, (2.13) 
0 

is also displayed in Table II and is equal to A trt +A,r,; it 
lies within a factor of 2 of the longitudinal relaxation times 
for the same solvents quoted by Maroncelli et al. 17(a) 
which are reproduced in Table I. A simple calculation 
shows that the initial relaxation time ~,init is related to 71 
and 72 by 7init=T172/(A172+A271). The diffusion coeffi- 
cient D(t) is time dependent; at short times D(t) = l/ 
(&tnit) and at long times D(t) = l/&i) assuming r1 > r2. 

III. LIMITING SOLUTIONS 

The integral equation (1.22b) for the survival proba- 
bilities and the coupled differential equations ( 1.1 ), from 

which it is derived, lead to the same exact solutions in 
limiting cases. ‘p2v6 They provide an important check on our 
numerical computations and are briefly recapitulated in 
this section. 

There are four limiting cases for ET in solvents which 
are characterized by a single relaxation time rL and a con- 
stant diffusion coefficient D=kT/rL (i.e., Debye sol- 
vents).6*‘p2 They are the narrow and wide reaction window 
limits, as well as the slow reaction and nond$iision limits. 
For ET in non-Debye solvents, which are distinguished by 
the existence of multiple dielectric relaxation times, there 
are just two well-defined limiting solutions; namely the 
narrow and wide reaction window limits. 

In the slow reaction limit for ET in Debye solvents 
(ki( x) <TL ’ ) , thermal equilibrium of the polarization co- 
ordinate x is always maintained and the time scale in 
which the reaction takes place is much larger than rL. It 
follows from Eq. (1.23) that ai =k, which is equivalent 
to a&) =kiJs. This leads to a simple exponential time 
dependence for the survival probabilities: 

Ql(t>=l-Qdt>, (3.la) 

Q2(t)=[kle/(kle+k2e)lC1--exp[-(k,,+k2,>tl}. 
(3.lb) 

In the wide reaction window limit (il,)il,), A =0 and 
a,(s) = k/S, where ki has the same form as Eq. ( 1.20) with 
v=v4 and ;l=il,: 

kt=vqexp[ -8(&+AGe)2/4;1,], (3.2a) 

k2=kl exp[flAG(‘]. (3.2b) 

The survival probabilities are the same as in Eqs. ( 3.1) 
with ki replacing ki,. 

In the nondiffusion limit [ki(X),71; ‘1 and a,,(s) 
zk,(x>/s. Substituting this in Eq. (1.16) and taking the 
inverse Laplace transform one finds Q, ( t) = 1 - Q2 ( t) and 

X [l-e-[kl(“)+i’r(x)ll]]d~. 

This leads to multiexponential decay of the reactants. 
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In the narrow reaction window limit d,(il,, AZ 1, and 
the vibrational contribution of the ligands to the reorgani- 
zation energy is negligible. The rate coefficients are delta 
fimctions1’2’6 

k(x) =k,(x) =k2(x) =koS(x-x,), 

where 

(3.4a) 

xc= (/%,+Ac0)/(2;1,) 1’2 (3.4b) 

is, for this case, identical to xlc and x2c defined in Eqs. 
(1.12). Note that x,=0 when Lo= -A@. At this point the 
rate is maximum (zero activation energy for the forward 
reaction) in the Marcus inversion region of this narrow 
window limit. It follows from Eq. (3.4a) that ki, 
=kOpi(x,O) (i= 1,2) and the diffusion reaction Eqs. (1.1) 
reduce to’ 

k= (P/277) ‘“k,,/[ 1+2(0/2~) “2k,,qjJ. (3.11) 

This demonstrates single-exponential behavior in this long- 
time approximation and identifies k as a first-order rate 
constant. If (p/25-) 1’2 k,,rL)l, we have 

k=kI=k2=(2rLfn)-’ (3.12) 

which is independent of the strength of the delta function 
k, and is inversely proportional to the solvent relaxation 
time rL. It follows from Eq. (3.12) that kz0.833rL1 
which is close to many experimentally observed values of 
kzri? 

IV. APPROXIMATE SOLUTIONS TO THE INTEGRAL 
EQUATIONS 

aP,/at=LIP~-kos(x-x,)(P1--P2), (3Sa) 

dp,/at=L,P,+k,S(x-x,)(P,-I’,). (3Sb) 

The Laplace transforms of the survival probabilities 
are given by Eq. ( 1.16), with A= 1 in the expressions for 
aSI and as2(s).* Equations (1.16) and (1.22b) are now 
exact but they do not lead to a general analytic solution for 
Qi( t) in the time domain. However, approximate solutions 
to these have been obtained for electron transfer in Debye 
solvents.’ Examples are barrierless ET reactions’ which 
lead to multiexponential decay and the single exponential 
interpolation formula discussed in Ref. 1. 

For barrierless reactions (pAe(x) < 1, PAGz(x) 
g 1) in the narrow window limit (A = 1 >, which occur 
when the reorganization energy ilo and the reaction free 
energy AGe are both small, k,z (fl/2~) 1’2 k, if the initial 
state is in equilibrium and [see Eq. (A3) of the Appendix] 

a&) = (W2r) 1’2kof(s)9 (3.6) 

where 

Analytic approximations2 to our integral equations for 
electron transfer which are not confined to the limiting 
regions are discussed in this section. These results extend 
our previous work to solvents with multiple relaxation 
times. We also discuss some new results in the inversion 
region and an improved interpolation formula which is 
applicable also to non-Debye solvents. 

A. Single exponential interpolation formula 

An approximate solution to the integral equation can 
be obtained by interpolation between the long- and short- 
time limits of the kernels a&t). The mathematical details 
are given in the Appendix from which we find that when 
AfO, the sum of Eqs. (A8) and (A17) provides the re- 
quired interpolation in transform space. When Ci#O (i.e., 
xlc and x2=-x0 are not zero) a simpler form is obtained by 
using Eq. (A19) instead of Eq. (A17) when we have 

f(s)= nzo [(:2~)t]2s+2~/q- * - (3.7) 
L 

Assuming (fl/2a) 1’2koTL, 1 one obtains’ from ( 1.16), 

Qi(t)=l-(l/r)arccos[exp(-t/rL)]. (3.8) 

However, if the reverse reaction is neglected, which corre- 
sponds to PAe < 1, fiAe > 1, one has instead 

Qi(t) = (2/r)arcsin[exp( -t/rL)] (3.9) 

and Q2 ( t) = 0 which is Sumi and Marcus result.6 Equations 
(3.8) and (3.9) predict the values of 4 and zero, respec- 
tively, for Q,(t) as t+ CO. The extraction of an overall 
single exponential rate constants k, and k2 in both direc- 
tions from the long-time behavior of the multiexponential 
survival probabilities is discussed in Ref. 1. It is found that 
at long times, 

Ql(t>=l-QAt), (3.10a) 

Q2(t)=[1-exp(-2kt)]/2, (3.10b) 

where 

asI z&[FA(T) + 11~1 +~lCndIXlcI, (4.la) 

ads) zk2,[FA(T) + l/s] +~2~nit/IX2c-XOIp (4.lb) 

where ~init is the initial relaxation time (see Sec. II) and 
FA ( 7) , defined in Eq. (A9) of the Appendix, is determined 
by the solvation dynamics (T) of the reacting intermediates 
which include relative contributions from the ligand (inner 
sphere solvent) vibrations and outer sphere solvent reori- 
entation and translation as measured by A. This equation 
extends our previous interpolation formula’ to non-Debye 
solvents and differs from it by the presence of the new term 
FA( 7). In Debye solvents 7init=7L, and FA( 7) =rLfA, 
where fA is defined in Eq. (A5). Substitution in Eq. ( 1.16) 
leads to 

QI(s) =1/s-Qe,Cs,, 

Q2b> =klp-‘/[s2+sa-‘(kl,+k2,) I, 
where the correction factor 

a= [ 1+ (kl,+kdFA~) 

+7init(al/IXlcI +a2JIx2c-xOI )I 
and (see the Appendix for derivation) 

(4.2a) 

(4.2b) 

(4.3a) 

J. Chem. Phys., Vol. 98, No. 2, 15 January 1993 

Downloaded 05 Jun 2004 to 130.111.64.68. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Rasaiah and J. Zhu: Reversible electron-transfer reactions 1219 

ai=~[(l+A)/(ZP3’2)lexp[yi(l--A)l 

X [1-erf( &/A)] (i=1,2) 

in which 

(4.3b) 

YI=Px:.,l--A)/[2(1+A)l, 

v2=P(x2,-xo>2(1--A)/[2(1+A)l, 
and 

(4.4a) 

(4.4b) 

x erf(x) = ( 2/7P2) 
s 

exp( -F)dt. (4.5) 
0 

On taking the inverse Laplace transform of (4.2b) 

Q2(t)=[k~e/(k~e+k2e)l(1-expt-((k~,+k2,)tl}, 
(4.6a) 

with the rate constants given by k,= kie/(Y. In the narrow 
window limit A = 1, ai=ko, and x~~=x~~=x~ SO that 

a= [I+ (kle+kdF,d~) 

+ko~nit(l/IxcI +l/Ixc--~oI 11. (4.7) 

For Debye solvents qnit=TL, FA( 7) =rLfA, and the rate 
constants are seen to be related to 7:‘. 

B. The inversion region 

In Sec. III we discussed barrierless reactions’ 
(flAe Q 1, PA@ ( 1) in the narrow window limit when 
multiexponential time dependence is found for the survival 
probabilities. The reaction could also be barrierless in one 
direction only @he Q 1, BAG % 1) : this interesting case 
occurs in the vicinity of the inversion limit where the re- 
organization energy il is approximately the negative of the 
reaction free energy A@ which is assumed to be neither 
zero (as in certain isotopic exchange reactions) nor small. 

The ET rate of barrierless reactions in Debye solvents 
in the narrow window limit at the inversion point when 
A= -A&’ has been discussed earlier.’ We extend that dis- 
cussion here by considering the whole region around the 
inversion point. Also unlike the previous study, our discus- 
sion considers the reverse reaction also at and near this 
point and the influence of ligand vibrations (A#1 ) as well 
as the contributions from solvent polarization fluctuations 
to the kinetics of these reactions. 

We cannot use Eq. (A19a) or the interpolation for- 
mula (4.la) for Q(S) in the inversion region for the for- 
ward reaction since it diverges at xlC=O which occurs 
when the activation energy is zero or the rate is maximum 
in the narrow window limit. A linear combination of Eqs. 
(A8) and (A17) would be the logical choice similar to Eq. 
(4.1) but it is not easily manipulated. Hence we use only 
the long-time approximation, Eq. (A8), for a,,(s): 

~(4 ddJ’,dr) + 11~1 (4.8) 

which is equivalent to dropping the last term of Eq. (4. la) 
in this region. 

The interpolation formula Eq. (4. lb) is used for 
ati( The argument given in the previous paragraphs 

Grampp & Hetz 

-160 -80 
-AG' kJ/mol 

FIG. 1. Log of the rate constants vs the standard free energy for ET in 
the inversion region for triplet thionine and several donors (data of Ref. 
25). Lower curve: least squires fit [Eq. (4.1 I)] through experimental 
points (0). Upper curve: theory [see Eq. (4.12)]. 

then leads to the single-exponential form (4.6) for the sur- 
vival probabilities with 

a=l+[(kl,+k2e)F~(7)+~27i,it/I~2c-X011. (4.9) 

Note that I x2C-xo I = ( A@-A)/( 21,) 1’2 is related to the 
activation energy for the reverse reaction. If it is large, the 
term involving this in Eq. (4.9) can be neglected and 

a=: 1+ (k~e+kaJFA~). (4.10) 

In Debye solvents ~~~~~~~~ and FA( 7) =rLfA. When the 
last term in Eq. (4.10) is larger than unity, the rate con- 
stant in the inversion region is inversely proportional to the 
longitudinal relaxation time. If this term is negligible (i.e., 
a= 1) the rate constant is independent of 7L and is given 
by the simple Marcus form, Eq. ( 1.20a), which is the max- 
imum possible rate for this simple mechanism. 

As an example of a simple ET reaction in the inverted 
region, consider the recent experiments of Grampp and 
Hetz25 on the back electron transfer in geminate radical 
pairs of triplet thionine and several aromatic donors in 
methanol (buffered at a pH of 8.6). A least-squares fit of 
the first-order rate constants vs the standard free energy of 
reaction A@ (Fig. 1) has the quadratic form 

loglok,,=2.8218-0.115 26A@--5.268~10-~A@ 
(4.11) 

from which we find the free energy and rate at the maxi- 
mum by setting the derivative equal to zero. From the 
discussion in this section and Eq. ( 1.2Oa), it follows that 
the the maximum rate occurs when the reorganization en- 
ergy A= -AGO,,,= 109.4 kJ mol-’ which leads to km,, 
= (@/27~)“~kda= 1.336~ 10’ s-l. To get an approxi- 
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mate measure of a we neglect the reverse reaction and 
assume that the solvent (methanol) has a single relaxation 
time (see Tables I and II). A simple calculation shows that 
in this case a- 1 and k lazkle. Assuming that the total 
reorganization energy A is not significantly changed for the 
triplet thionine-donor pairs as A@ changes one can predict 
the variation of kl, with A@ using only the data at the 
maximum of the inversion region. It follows from Eq. 
(1.20a) that at 295 K, 

loglokl,=4.283-0.088 512A@-4.046~ 10-4AG@2. 
(4.12) 

The agreement is reasonable (see Fig. 1) in view of the 
assumptions that have been made. Many ET reactions in 
the inversion region, however, show much higher rates due 
to smaller activation energies associated with different 
channels. This is discussed in Sec. V. 

C. Multiexponential time dependence 

This may be observed for the survival probabilities 
even when the solvent is characterized by a single relax- 
ation time. It is also evident in the numerical solutions to 
the integral equations described in Sec. V. An analytic ap- 
proximation to the integral equation shows this form’ if 
one includes several terms in the series expansion of U~i(s) 
given in Eq. ( 1.24) for ET in Debye solvents. If we use a 
two term approximation 

0-l I 
0.0 0.2 0.4 0.6 0.6 A 1.0 

FIG. 2. Plot of (x or (I~ vs A=&/d for a symmetrical ET reaction in a 
Debye solvent with T= 10 ps, AG”=O.O, and @co = 1 ps-‘. The middle 
curve shows the empirically determined values aD used in the improved 
double-exponential formula that provides a good fit to the integral equa- 
tion solutions-see Fig 3. The upper curve for (x is calculated from JZq. 
(4.3a) and the lower curve for a, from Eq. (4.21). 

the inversion region (x l,zO) when the barrier for the re- 
verse reaction is large, i.e., k2=s0. 

We can improve on this by taking the union of Eq. 
(4.13) and the long-time approximation Eq. (A8) of the 
Appendix when we have 

Q(S) z:kd l/s+PA2x;J(s+~;‘) I, (4.13a) 

u,z(s) zkze[ l/s+PA2(x2,-xo)*/(s+7,‘)1, (4.13b) 

for asi 3 substitute this in Eq. ( 1.16)) and take the inverse 
Laplace transform, one fmds the double-exponential form’ 

f&(t) z=kd(kle+kd +C+ exp( -~+t> 

+c-- .ZXp( -K-t). (4.14) 

The rate constants -K+ and -K- are the roots of 

f(s) =~+Bs+$(ki,+kd (4.15) 

and (correcting a sign error in Ref. 1) the coefficients 

C*=&kl,[l--(7=/c*)-l]/(/f--~+) (4.16a) 

=~kl,[l-(-LK/c*)-1]/[B2-4~~1(kl,+k2,)]1’2, 
(4.16b) 

where 

where Eq. (4.19) differs from Eq. (4.13) by the presence 
of a term which is independent of s. Note that FA(r) -PO as 
A-0. Repeating the argument used previously’ we find 
that the rate constants (-K+ and -K-) are the roots of 

where ag defined by 

aD= 1+ (kle+k&‘A(T) 

is identical to Eq. (4.10) and 

Bn=aDC7L1+k;,+kl,+PA2[k;~cl,+k~~(X2c-Xo>23) 
(4.22) 

B=r,1+kl,+k,,+PA2[k,~~=+k2~(x2~-xo)21. 
(4.17) 

From the solution to Eq. (4.16) one finds 

and k$ = k,/a,. Solving for the roots off(s) we find that 
the coefficients C,’ and rate constants K,” are given by the 
same equations as the corresponding unsubscripted quan- 
tities except that k, is replaced by k$ and B by B,/a,. 
Explicitly, 

--~K*=-BB[B~-~T;~(~~~+~~~)]~‘~. (4.18) and 
It is easily verified that when t=O, Q2(t) =0, and that as 
t-+ CO, Q,(t) -+k,J(k,,+ k2J which is its equilibrium 
value. In the limit A+O, Eq. (4.13) becomes identical to 
the single-exponential formula characteristic of the wide 
reaction window limit (Sec. II) when one finds K+ =k,, 
=kl and C- =O. A similar limit (K+ =kle) is reached in 

where B’ = B,/a,. One easily verifies again that Q,(t) =O 
when t=O, and that Q2(t)-fkl/(kl,+k2J as t+ CO. 

FA (7) already reflects the complex solvation dynamics 
of non-Debye solvents. The double-exponential form may 

1220 J. Rasaiah and J. Zhu: Reversible electron-transfer reactions 

as2(s) &e[FAd + l/.~+PA*(x2,-xo)~/(i+~3], 

(4.19b) 

(4.20) 

(4.21) 

--2~~=-B’f[B’~-4+(k;,+k;,)]‘” (4.23) 

(4.24) 
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TABLE III. The empirically determined correction factor (~a and rate constants for the double- 
exponential interpolation formulas describing electron transfer in Debye solvents when TV= 10 ps, AGc=O 
and #Ice = 1 ps-’ as a function ofA=&//l. 

A QD C,’ c; TLK: TLK,- r&a 

0.999 5.5 -0.4443 -0.0557 0.1829 2.271 0.2077 
0.909 3.30 -0.419 -0.0803 0.2249 2.936 0.3302 
0.833 2.50 -0.4050 - 0.0949 0.2512 3.322 0.417 
0.667 1.5 -0.3737 -0.1263 0.3104 4.007 0.622 
0.500 1.28 -0.355 -0.1442 0.3629 3.472 0.630 
0.200 1.06 -0.335 -0.1648 0.4114 3.322 0.683 

thus be extended to non-Debye solvents by replacing TV by 
qnit or by assuming an effective relaxation time [Eq. 
(2.13)]. The general accuracy of the last assumption (see 
Sec. VI) may not be good. Another method of solving the 
integral equation for ET in non-Debye solvents assuming 
an effective relaxation time 72 has been presented else- 
where2 to which the reader is referred. 

The correction factors a and aD which modify the 
thermal equilibrium rate constants kie in the single- 
exponential interpolation formula and improved double- 
exponential formulas enable the survival probabilities to be 
predicted not only in the different limits, but also in the 
regions between them. When a or ag is significantly 
greater than unity, the electron-transfer rate is controlled 
by the solvation dynamics. Figure 2 shows that this occurs 
as A approaches the narrow window limit when the dy- 
namics of the outer solvation sphere plays an increasingly 
significant role in the kinetics of electron transfer. 

Although Eq. (4.3a) for a is qualitatively correct, its 
accuracy is limited by the approximations used in deriving 
it (see the Appendix). In Fig. 2 we plot a and aD vs A for 
a symmetrical electron-transfer reaction (AGa=O) in a 
Debye solvent assuming rL= 10 ps and @ko = 1.0 ps-‘. 
Note that aD < a and both a and aD+ 1 when r=-+O. On 

Q, 0) 

0.9 
~~=lOps,dj?k,= Ips-I, pAGo= .o 

FIG. 3. Comparison of the survival probabilities after ET calculated 
from the integral equation and the double exponential approximations. 
The system parameters are AJ&=O.2, TV= 10 ps, @.=5, @kc = 1 ps-‘, 
and gAGa=O.O. The curves are identified as follows: (-----) integral equa- 
tion; (-+-) double-exponential approximation; (---- X ----) improved 
double-exponential approximation (aD=2.5). 

comparing the improved double-exponential form with the 
solutions to the integral equations that are discussed in Sec. 
V, we find that aD calculated from Eq. (4.21) is a little too 
small above A=O.S. Values that give a better fit to the 
integral equation solutions at longer times can be deter- 
mined empirically; they are also shown in Fig. 2. Table III 
contains the corresponding rate constants and coefficients 
obtained in this way and Fig. 3 displays results that are 
quite typical. It is seen that the agreement with the integral 
equation solutions is excellent at long times but less so at 
very short times. Since ag is strongly correlated with the 
reaction parameters ( AGe, etc. ), the values displayed in 
Table III are accurate only for the particular reaction con- 
sidered. In the discussions that follow in Sec. V, the sur- 
vival probabilities in the improved double-exponential ap- 
proximation are calculated using Eq. (4.22) for aD The 
analytic expressions discussed here (double- and single- 
exponential time dependencies) are also useful in deducing 
the approximate functional forms of the numerical solu- 
tions to the integral equations described in the next section. 

V. NUMERICAL SOLUTION TO THE INTEGRAL 
EQUATIONS 

The solutions discussed in Sets. III and IV are limiting 
cases or approximations to the integral equations. No gen- 
eral analytic solution in the time domain is possible except 
in special cases and the solution, especially for systems 
with multiple relaxation times, has to be obtained numer- 
ically. This can be done in small time increments starting 
from the initial condition at zero time as follows. Let 
t=mt’ and u=nt’, where t’ is the time step and m and n 
are integers with man. Using the trapezoid rule and the 
initial condition Q,(t) = 0, we have, at the first time step 
Cm= 11, 

Q,<t’, =kd’/[ 1 +a(O)t’/2] (5.1) 

and in the following time steps (m>2) 

Q,(mt’> =klet’- (P/2) a(O)Q,(mt’) 

m-1 

+2 2 a[(m-n>t’lQ2W> . (5.2) 
n=l 

Solving for Q2 (mt’), and making use of Eq. (5.1), we get 
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7.00 

1W 

0' 
I? 

+N3JxE5 
0 

TL= lops,flk,= jps-‘, BAG’=-1.0 

I ~. .-;-; :;‘- y* <; ~::. iihr : - .-..: 

FIG. 4. Plots of the kernel a’(f) = a;(t) + a;(t) of the integral 
equation and a;(t) near the narrow window limit (LJ&=O.OCO3) for ET 
in a Debye solvent (T== 10 ps) with @=5, $k, = 1 ps-‘, and PA@= 
- 1.0. mote: a;(t) = a;(t) at the’narrow window limit.] 

m-1 
Q2(mt’) =Q2(t’) m- c a’[ (m-n)t’]Q2(nt’) 

n=l 

(m22,n <ml, (5.3) 

where 

a’[ (m-n)t’] =a[ (m-n)t’]/kl,. (5.4) 

The recurrence formula (5.3) connects the survival prob- 
ability at time t=mt’ (m>2) with the probabilities at pre- 
vious time steps t= nt’ (n < m) . It is easily calculated even 
on a personal computer with a few lines of programming. 
The solutions to the integral equation can be obtained on a 
Macintosh personal computer with 4 MB memory. 

ZL= l0ps,rpk,=.ipsT’,PACP=-i.O 

a’(t) - -4. 

_r ‘.;;.I ,. .. i’a .Yz ‘iF,, .A”+ -.=. 

-CL -.___ i 

a ,‘(O 

.~ 
i- * ; . . .I “i : <,.~ . . 

a; (0 

10 20 30 
t PS 

FIG. 5. Plots of the the kernel a’(t) = a;(t) + u;(t) of the integral 
equation, a;(t) and a;(t) when l/&=5 for ET in a Debye solvent 
(~~=lOps)withfia=5, $%,,= lps-‘,and~A@=il.O. 

7 The numerical solution of the integral equation using 
Eqs. (5.1) and (5.3) could become inaccurate in the nar- 
row window limit (where the integral equation is exact) 
unless care is excercised. This is because of the singularity 
in q(t) at t=O-when A= l-see Eq. (1.18). The problem 
is illustrated by Figs. 4 and 5 which show plots of a’ (t) 

. close to the narrow window limit and away from it. In spite 
of this singularity at t=O ,for A = 1, the integral in Eq. 
(1.22) is finite which suggests that special precautions 
have to be taken in getting a numerical solution. The sin- 
gularity appears explicitly only in Eq. ( 5.1) in the expres- 
sion for Q2( t’) but not in Eq. (5.3). The difficulty with the 
singularity can then be circumvented if Q2( t’ ) , which is the 
s,urvival probability at the first time step, is calculated an- 
alytically. Equation (5.3) can then be used to calculate the 
survival probabilities at subsequent time stepsaince u(t) is 
finite when t > 0. 

Since u’(t) is very steep (Fig. 3), the first time step 
should be small. It follows from Eq. ( 1.17) that ui( t) 
z (const.) $- 1’2 for ET in Debye solvents where the con- 
stant depends on the longitudinal relaxation time rk The 
same expression applies also for non-Debye solvents except 
that the constant is determined,by the relaxation at short 
times-see Sec. IV. It follows that tUi(t) is well behaved in 
the limit t-+0. Using this in Eq. (5.1), enables the survival 
probability Q2( t’) after the first time step to be calculated 
accurately. 

The method described here is similar to the procedure 
introduced by Perram in the theory of fluids to compute 
the correlation functions from Baxter’s integral equation 
which follows from the Wiener-Hopf factorization of the 
direct correlation function.26 It provides a convenient and 
general method to determine the survival probabilities for 
electron transfer in all solvents, even those with multiple 
relaxation times, without the introduction of additional ap- 
proximations, e.g., an effective relaxation time. An alter- 
native is the numerical solution of the coupled differential 
equations which is much more computationally demand- 
ing.” 

vi. RESULTS AND biscusSioN - 

The standard free energy of the reaction DA@, the 
contributions of ligand vibration & and solvent polariza- 
tion ilo to the reorganization energy, the time correlation 
function A(t) along the reaction coordinate, and the con- 
stant ko, which is determined by the reaction adiabaticity, 
are input parameters or functions in our calculations of the 
survival probabilities in ET reactions. Of these, the stan- 
dard free-energy change AGs and the time correlation 
function A(t), as we have seen in Sec. II, can be deter- 
mined experimentally. Although we treat @k. as a pa- 
rameter in our calculations, its determination is, strictly 
speaking, a quantum-mechanical problem. The contribu- 
tions- of the reorganization energies are conveniently char- 
.acterized by their sum /z and the ratio ‘I//z0 or A=&/A 
which is equal to 0 and 1, respectively, in the wide and 
narrow window limits. A simple exponential time decay of 
the reactants is predicted in the wide window limit and 
additionally, for Debye solvents, in the slow reaction limit 
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20 3;o 

FIG. 6. Plot of the survival probabilities of the reactants on ET near the 
narrow window limit (4@,,=0.0003) in a Debye solvent (~~=10 ps). 
&l.=5, $/cs = 1 ps-‘, and fiAGc= - 1.0. (-) Numerical solution of the 
coupled differential equation; (-+-) integral equation; (-+-) dou- 
ble exponential; (-O-) single exponential; (-A-) single-exponential 
interpolation formula; (-X-) double-exponential interpolation for- 
mula. The difference between the solutions to the differential and integral 
equations is of the same order as the error in the numerical solution to the 
differential equation. 

while multiexponential behavior is expected, even for ET 
in Debye solvents, in the narrow window and nondiffusion 
limits. As discussed in Sec. III, multiexponential time de- 
pendence of the survival probabilities becomes a single ex- 
ponential at long times which allows a rate constant to be 
determined. 

The accurate determination of the parameters @ko, 
&l,, and &/do for a particular ET reaction is beyond the 
scope of this investigation and we do not attach any special 

1 .Ol 

Q, 0 

0.u 

0.6C 

0.40 

WI 

?kl= lO,Ph=5 
ho 
ZL = lOps,@k,= 1 ps-I, PA@= -1 .O 

10 20 

tPs 

FIG. 7. Plot of the survival probabilities of the reactants after ET near 
the wide window limit (&/&= 10) in a Debye solvent (T== 10 ps) when 
@=5, J& = 1 ps-‘, and pAGc= - 1.0. Legend as in Fig. 6. 

1 
” 1” 30 

FIG. 8. Plot of the survival probabilities of the reactants after ET when 
when AdLo= 1 in a Debye solvent (TV= 10 ps) assuming &l.=5, 
$ko = 1 ps-‘, and pA@=O.O. Legend as in Fig. 6. 

relevance to the particular values chosen for our calcula- 
tions except that they fall within the expected range. The 
detailed functional form (e.g., exponential or biexponen- 
tial) assumed for the time correlation function A(t) , how- 
ever, has a firmer theoretical foundation based on its iden- 
tity with the experimentally determined time correlation 
function S(t) for the free energy of solvation of the, react- 
ing intermediates. As discussed in Sec. II, this assumes that 
the solvent response to the polarization field is linear. 

In Figs. 6-9 we present our calculations of the survival 
probabilities for ET in solvents whose solvation dynamics 
is determined by a single relaxation time-see Eq. (2.11) 
and Table II. The practical difficulty in solving the integral 
equation at the narrow window limit, where it is exact, was 
discussed in Sec. V. We used the approximate but accurate 
solution given there or the solution to the differential equa- 
tion itself to determine the survival probability in the first 

1.0 

0, (0 

0.6 

FIG. 9. 

.- j. 
. _ -0 _ f, 

‘T~=ips, -@k,= Ips-‘, pAC?=O .O 

10 
z 

t Ps 

Plot of the survival probabilities of the reactants after ET in a 
Debye solvent (rL=l ps) when /I,/&=l, &l=5, @k,, = 1 ps-‘, and 
pA@=O.O. 
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0.6-l I 
0 20 40 60 

t8pOS 
FIG. 10. Plots of the survival probabilities of the reactants for ET in 
n-propanol calculated from the integral equation assuming A/& 
=O.C003, &l=5, #k,, = 1 ps-‘, andpAGc=O.O and two different expres- 
sions for S(r) = A  (t&-see Table II and text for details. 

time step ( ~5 fs). Equation (5.3) was used in subsequent 
time steps to solve the integral equation near this narrow 
window limit (~,/~o=0.0003). Figures 6 and 7 show that 
the agreement with the solution to the coupled differential 
equationz7 is good. No special precautions are neccesary to 
obtain the solutions to the integral equation away from the 
narrow window limit; examples are shown in Figs. 7-9. 

As discussed in Sec. III the integral equation is exact, 
not only in the narrow window limit, but also in the wide 
window, slow diffusion, and fast reaction limits. Figure 7 
illustrates the behavior near the wide window limit and 
Figs. 8 and 9 confirm that the solutions to the integral 
equation are close to those of the coupled differential equa- 
tions even away from these limits. It is seen that the 
double-exponential formulas [Eq. (4.14)] provide an excel- 
lent approximate solution for the parameters used in Figs 
7-9. By inference a simple exponential time dependence 

I.” 

water 

Q,(t) 

$Sk,= Ips-‘, PAGO=0 .O 

0.8 

S(t) exp(-U0.86) 

-- w = 0.33exp(-t1.16) + O.Pexp(M.2) 

sg1exp 

0.7-r 
0 I 2 tps 3 

FIG. 11. Plots of the survival probabilities of the reactants for ET in 
water calculated from the integral equation assuming &/&=0.2, &l=5, 
,/& = 1 ps-‘, and fiAGc=O.O and two different expressions for S(t) 
=A&-see Table II and text for details. The single-exponential solution is 
also shown-see Eqs. (3.1). 

Q,(t) propylene carbonate 

0.8- 

0.7- 

0.6 - - dilfeqn 
- S(t) = exp(-V2.4) 

- w  - 0.46exp(-t/.43) + 0.54exp(-V4.1) 

-0 2 6 
tP 

FIG. 12. Plots of the survival probabilities of the reactants for ET in 
propylene carbonate calculated from the integral equation assuming LJ 
at,=o.ooo3,pk5, $k, = ips-‘, and f lA@=O.O and two different ex- 
pressions for S(t) = A( t)-see Table II and text for details. The solution 
to the coupled differential equations when .S(t) is determined by a single 
effective relaxation time is also shown. 

would be a poor approximation in these examples. 
An advantage to the integral equation formulation is 

that it is just as easy to solve for ET reactions in non-Debye 
solvents as it is for ET in Debye solvents. Additional dif- 
ficulties do not arise in obtaining the numerical solution 
when the time correlation function A(t) along the reaction 
coordinate [or, equivalently, s(t)] is more complicated 
than a simple exponential. The coupled differential equa- 
tions, on the other hand, are more difficult to solve when 
S(t) is other than a simple exponential, since the diffusion 
coefficient becomes time dependent. The relative effects of 
ligand vibration and solvent relaxation on ET rates are 
easily studied in our approximation by simply changing the 
parameter A in the kernel of the integral equations. The 
demonstration that A(t) =S( t), albeit in the linear regime, 
enables ET rates in a wide variety of solvents to be com- 
pared and investigated systematically. 

Our calculations for “model” ET reactions in 
n-propanol, water, and propylene carbonate using the co- 
efficients and relaxation times given in Table II for S(t) are 
displayed in Figs. 10-12. In all cases, the standard free- 
energy change was assumed to be zero as it is for simple 
isotopic exchange reactions (e.g., the Fef2/Fe+3 couple). 
&lko and /3;1 were assumed to be 1.0 ps-’ and 5, respec- 

tively, which is the assumption made in the other cases that 
were investigated (Figs. 6-9). A significant vibrational 
contribution to the reorganization energy (A/&=0.2) 
was considered for electron transfer in water while the 
others were studied near the narrow window limit. 

From these figures it is clear that the survival proba- 
bilities for ET in n-propanol and propylene carbonate de- 
pend significantly on whether a biexponential or an effec- 
tive single-exponential time dependence is assumed for 
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A(t) . This difference is much less important for ET reac- 
tions in water where the use of the biexponential form for 
A(t) gives results that are close to the single-exponential 
decay predicted by [Eq. (4.1)]. It is also clear from these 
figures that the assumption of an effective longitudinal re- 
laxation time in the calculation of electron-transfer rates is 
a poor approximation when the solvation dynamics is con- 
trolled by widely different relaxation times in different time 
domains. 
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initial state If) from which the corresponding integral 
equation approximation for the general case can be de- 
rived. Another limitation is the assumption of linear re- 
sponse of the solvent which leads to parabolic potential- 
energy wells. Deviations from this and the roles of nuclear 
and electron tunneling which are not explicitly considered 
in this study remain areas for future investigation.3o931 

ACKNOWLEDGMENTS 
We close with a brief comment on some of the main 

limitations of the present approach to electron transfer and 
how they may be rectified. First of all it is based on a model 
(Sumi and Marcu8) which treats the vibrational contri- 
bution to the reorganization energy in the classical limit. 
This gives rate constants, in the single-exponential regime, 
that are in some cases too small by several orders of mag- 
nitude,28 while in others they appear to be correct as seen 
in Sec. IV.25 Low values of the calculated ET rates in many 
cases are attributed to the neglect of high-frequency vibra- 
tional modes of the acceptor which increase the rates by 
decreasing the activation energy and the standard free en- 
ergy in the inverted region. This problem has been treated 
theoretically by Jortner and Bixon.29 To extend the present 
approach to include this modification of the model we treat 
each vibrational mode in the multichannel system indepen- 
dently and replace Eq. ( 1.1) by a pair of equations 

One of us (J.C.R.) thanks Joseph Hubbard for helpful 
conversations on solvation dynamics, Professor Robert 
Dunlap for his interest, and Professor Andrew McCam- 
mon for his hospitality at Houston where this work was 
done. 

APPENDIX: LONG- AND SHORT-TIME 
APPROXIMATIONS FOR alt) AND ITS LAPLACE 
TRANSFORM ads) 

a~/at=[lf(t)--k:(x)~P',+k~(x)P',, (6.4a) 

api,/at=[L:(t)--k',(x)]P',+k',(x)Pi, (6.4b) 

for each channel i. Here G (x) and k;(x) are defined by 
equations similar to Eq. (1.20) in which Ye, PAG, and 
/3Ae are replaced by the corresponding functions for each 
channel identified by the superscript i. Each channel has 
the same solvent reorganization energy il,-, but different vi- 
brational reorganization energies ;1: and standard reaction 
free energies defined by 

AGel’= A@-ihw. (6.5) 

The dependence of AGai on i produces a corresponding 
change in the characteristic rate for each channel. Since 
each channel is dealt with separately, the total rate coeffi- 
cients in each direction are the corresponding sums over all 
vibronic channels as suggested in the theory of Jortner and 
Bixon.29 This means that the numerical solutions and an- 
alytical approximations to the integral equations for ET 
discussed in Sets. III-V can be carried over to this case by 
taking the appropriate sums over the different vibronic 
channels. Recently, Akesson, Walker, and Barbara28(a) 
have used such a model to explain the ET rates of betain- 
in slowly relaxing solvents (the nondiffusion limit) in the 
inversion region assuming a single solvent relaxation time 
by summing over just two channels. Our work shows how 
the multichannel theory can be applied to solvents charac- 
terized even by multiple relaxation times. 

When A=O, ai( t) =k, and the Laplace transform 
U~i( S) = kits. We need not discuss this case further in detail 
and assume in what follows that A#O. 

1. Long-time approximation 

The correlation function A(t) is small at long times 
and it follows from Eqs. (1.17) that 

ai(t)zkie[1-A2A(t)2]-1’2. (Al) 

This equation is indeed exact at all times for i= 1 when 
xlc=O (il=-AGe) and for i=2 when x,,---x0=0 (A 
=A@). These special cases characterize “barrierless” re- 
actions in the forward and reverse directions, respectively, 
in the narrow window limit. Expansion of Eq. (Al) in 
powers of A(t) leads to 

ai( t) =kie 2 
2n! 

n=O [2n!!12A2nA(t)2”e (A21 

For Debye solvents, A(t) =exp( --t/rL) and the Laplace 
transform of Eq. (A2) is 

* 2nU2” 1 
asi(s)=kie C - n=(J [2n!!] (s+2n/rL) * (-43) 

When rL is of the order of picoseconds and n is not zero, 
we may assume that n > s7J2 for small enough s. It fol- 
lows that in the long-time limit, 

asi(s) z=kie(rLfA+ l/s), (-44) 

where 

(A5) 

A second limitation to our solutions is that an equilib- 
rium distribution is assumed initially for the reactants. 
This can be rectified by going back to Eq. (4.25a) of Ref. 
1 which gives the general operator solution for an arbitrary 

When A = 1 (narrow window limit), explicit summation 
shows’ that fA--,0.6. Since OgA<l it follows that 
O< f,& i. To extend this discussion to non-Debye solvents 
we assume the biexponential form 

A(t) =A1 exp( ---t/r,) +A2 exp( -t/r2). (446) 

Then A(t) 2n can be expanded as 
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2n 

A(t)2”= c C2,+4~-‘A~ exp[ -t[ (2n-i)/ri+i/T2]], 
i=O 

(A7) 
where C&i are the binomial coefficients. Substituting this 
in Eq. (A2), taking Laplace transforms, and using the 
same argument as for Debye solvents we find 

UsAs) z=kie[FA(T) + 11~1, 
where 

(A81 

(A91 
As A + 0, FA ( G-) -t 0. For Debye solvents FA ( T) =q$,+ 

2. Short-time approximation 

We first discuss the short-time behavior in Debye sol- 
vents before discussing the same limit in non-Debye sol- 
vents. At short times t<~~ and exp ( - t/rL) =: 1 - t/rk Us- 
ing this in Eq. (1.17) we find 

Ui(t) zki,Biexp( -Cit/TL)/( 1 +d+~*t/TL)“*, (AlO) 

where C{ = &&42/(1 + A)* and B,=expp&+t2/ 
( 1 +A)] while CG and B2 have the same form as C; and 
B,, respectively, except that xle is replaced by xzc--x,,. 
Since A#O, we can also write this as 

Ui(t) ~ki~BJ-‘2-“2 exp( -c;t/TL)/[ (c+t/TL)1’2], 

(All) 
where C=( l--A)/M2. The Laplace transform of Eq. 
(All) is 

l/2 
Uk(S) =k,( BlTJAVZ) 

XeXP(Xj)[l-erf( &)I, (A121 

whereXi = C( Ci + .sT~) and erf( a) is the error function. 
Equations (All) and (A12) are our primary results for 
short times. In the narrow window limit (A = 1) both C 
and Xi-0 and 

Ui( t) s k,Bd-’ (TJ2t) V2 exp( - cit/TL). (A13) 

The coefficient of exp(Xi) [l - erf( &)I in Eq. (A12) is 
the Laplace transform of Eq. (A13). 

Equation (A12) can be simplified further by assuming 
Xi =: CC; = yiin exp (Xi) [ 1 - erf( &)I which is equivalent 
to the assumption exp(SrL) z 1, which applies when STL is 
small. We then find 

U&(S) =kie( B~Tr/AVZ) z 
( ) 

l/2 

c; +.STL 
eXP (Yf) [ 1 - erf( $2 I, 

(A14) 
where 

a=pxT,(l--A)/[2(1+A)l, (A15a) 

Y*=P(x2c-xo)2(1--A)/[2(1+A)l. (A15b) 

When xlc=O, C; =~ 0 which occurs in the inversion region 
for the forward reaction and 

Bi TTL ‘I* 
usi(s>-kiez 2~ * 

( ) 
L4w 

A similar expression for u,~(s) is obtained when x2c-xo 
(i.e., n=ACs). Using the definitions of B, k,, and Ci, and 
recalling that A#O, Eq. (A14) can be written as 

(A17a) 

(A17b) 

ai=ko[(l+A)/(243’2)]exp[~i(A-l)][1 

-erf( &)I, (A18a) 

fly= ( 1 +A)2/k. (AlSb) 

In the narrow window limit (A + l), ai= k,. Equation 
(A18) can be extended to the wide window limit by using 
a switching function which lets ai-0 as AdO. A simple 
change which achieves this- is to replace erf( $i) by 
erf(A-’ &) in Eq. (AlSa). 

When xt,#O and x~~-x~#O, and for small enough s, 
we recover the simpler approximation: lV3* 

%1(S) =vJIXlcl9 (Alga) 

%2W~=27JIX2c-XoI. (A19b) 

It follows from Eq. (A16) or Eq. (A17) that when Ci 
= 0 (i.e., xi==0 for i= 1 and x2,-x0=0 for i=2) that 

Usi z (kd2) ( TL/AP) I’*( I/S) l/2 * C-420) 

This applies at the rate maximum in the inversion region. 
Elsewhere one could use Eq. (A 19 ) . 

To extend our discussion of the short-time approx- 
imation to non-Debye solvents we need only to replace 
7L by the initial relaxation time PInit. For example, if 
A(t) eXp (-t/71) -kA2eXp (-t/72), Tinit=T172/(A172 

+&I). 

‘J. Zhu and J. C. Rasaiah, J. Chem. Phys. 95, 3325 (1991). [Errata: In 
Eq. (4.35b) change --a,, to +a,,, in Eq. (4.54) change + to - before 
(T=K*)-‘, in Eqs. (5.2) and (5.3) insert; (k/d ) before (z-q )‘and 
(z--22,Y, respectively, and in Eq. (4.42) replacl @(yi) by @( &,). In 
the Appendix ;li and k, should read d., and ki, respectively. In the figure 
captions insert $B before 4.1 

‘J. Zhu and J. C. Rasaiah, J. Chem. Phys. 96, 1435 (1992). 
3N. Agmon and J. J. Hopfield, J. Chem. Phys. 78,6947 (1983). 
4See G. R. Fleming and P. G. Wolynes, Physics Today 43, 36 (1990), 

and references therein. 
‘P. Hanngii, Rev. Mod. Phys. 62, 255 ( 1990) 
6H. Sumi and R. A. Marcus, J. Chem. Phys. 84,4894 (1986); W. Nadler 

and R. A. Marcus, ibid 86, 3906 (1987). 
‘R. A. Marcus, J. Chem. Phys. 24, 966 (1956); 24, 979, 1956; R. A. 

Marcus and N. Sutin, Biochim. Biophys. Acta 811, 265 (1985). 
‘N. S. Hush, J. Chem. Phys. 28,962 (1958); N. S. Hush, Trans. Faraday 

Sot. 57, 557 (1961). 
‘N. R Kestner, J. Logan, and J. Jortner, 3. Phys. Chem. 78,2148 (1974). 

“J. T. Hynes, J. Phys. Chem. 90, 3701, (1986); T. Fonseca, J. Chem. 
Phys. 91, 2869 (1989); L. D. Zusman, Chem. Phys. 119, 51 (1988). 

“P. G. Wolynes, J. Chem. Phys. 86, 5133 (1987). 
?A. L.. Nichols and D. F. Calef, J. Chem. Phys. 89, 3783 (1988). 

J. Chem. Phys., Vol. 98, No. 2,15 January 1993 

Downloaded 05 Jun 2004 to 130.111.64.68. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Rasaiah and J. Zhu: Reversible electron-transfer reactions 1227 

“I. Rips, J, Klafter, and J. Jortner, J. Chem. Phys. 88, 3246 (1988); 89, 
4288 (1989). 

“B. Bagchi, Ann’.‘. Rev. Phys. Chem. 40, 115 (1989); A. Chandra and B. 
Bagchi, J. Phys. Chem. 94, 3152 (1990). 

15F. 0. Raineri, Y. Zhou, H. L. Friedman, and G. Stell, Chcm. Phys. 152, 
201 (1991); Y. Zhou, H. L. Friedman, and G. Stell, ibid 152 (1991). 

16J. D. Simon, Act. Chem. Res. 21, 128 (1988). 
I7 (a) M. Maroncelli, 3. MacInnes, and G. R. Fleming, Science 243, 1674 

(1989); (b) G. R. Fleming and P. G. Wolynes, Physics Today 43, 36 
(1990). 

‘*(a) P. F. Barbara, W. Jarzeba, Act. Chem. Res. 21, 195 ( 1988); (b) P. 
F. Barbara and W. Jarzeba, Adv. Photochem. 15, 1 (1990); (c) W. 
Jarzeba, Gilbert Walker, A. E. Johnson, and P. F. Barbara, Chem. 
Phys. 152, 57 (1991). 

“L. Perera and M. Berkowitz, J. Chem. Phys. 96, 3092 (1992). 
“P. Vijaykumar and B. L. Tembe, J. Phys. Chem. 95, 6430 (1991). 
*IT. Fonseca and B. Ladyani, J. Phys. Chem. 95, 2116 (1991). 
=M. Maroncelli, J. Chem. Phys. 94, 2084 ( 1991). 
230. Karim, A. D. J. Haymet, M. J. Banet, and J. D. Simon, J. Chem. 

Phys. 92, 3391 (1988). 
“M. Maroncelli and G. R. Fleming, J. Chem. Phys. 89, 5044 (1988). 

25G. Grampp and G. Hem, Ber. Bunsenges. Phys. Chem. 96, 198 (1992). 
26J. Perram, Mol. Phys. 30, 1505 (1975). 
27Stable numerical solutions to the coupled differential equations were 

obtained using finite differences; the details are discussed by us in Ref. 
1. The ratio r=At/h2, where At is the time step and h is the space 
interval of the variable X, was held near .Ol. The error bar in Fig. 6 
corresponds to the range of stable solutions that can be obtained for 
different At and h which satisfy the aforementioned condition. 

28 (a) E. Akesson, G. C. Walker, and P. Barbara, J. Chem. Phys. 95,4188 
(1991); (b) G. Walker, E. Akesson, A. E. Johnson, N. E. Levinger, and 
P. F. Barbara, J. Phys. Chem. 96, 3278 (1992). 

2gJ. Jortner and M. Bixon, J. Chem. Phys. 88, 167 (1988). 
3oC Zheng, J. A. McCammon, and P. Wolynes, Chem. Phys. 158, 261 

(1991). 
“C. C. Moser, J. M. Keske, K. Warncke, R. S. Farid, and P. L. Dutton, 

Nature 355, 796 (1992). 
‘*These values of cq and yi are slightly different from the ones given in 

Ref. 1 because some terms of O(~/T~) were omitted previously in the 
short-time expansion. The numerical difference between the two is 
small. 

J. Chem. Phys., Vol. 98, No. 2, 15 January 1993 Downloaded 05 Jun 2004 to 130.111.64.68. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


