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The uncertainties in the route to infinite dilution for 2-2 electrolytes are discussed 
in relation to the practical difficulties o f  determining the standard emf" s o f  simple 
reversible cells containing Z n S 0  4 in H20 and D20 solutions. These difficulties are 
due to uncertainties in the theory o f  highly charged ions in aqueous solution. 
Recent developments in theories o f  electrolytes, especially those for which 
numerical results are available, are critically evaluated for their accuracy and 
adaptability to changes in the solute potential. Simple refinements to the model 
(i.e., the solute potential) are described, and the changes are interpreted, in terms 
o f  the molecular interactions between sets or pairs o f  ions in the pure solvent. 
Recent work on the effect o f  solvent granularity and other molecular properties 
o f  the solvent (e.g., dipole moment) on the solute potential is reviewed. 

KEY W O R D S :  Electrolytes; aqueous solutions; heavy water; electro- 
motive force; extrapolation ; electrolyte theory ; models ; thermodynamics, 
cospheres; solvent granularity. 

1. I N T R O D U C T I O N  A N D  T H E  E M F ' s  O F  C E L L S  

My interest in electrolyte solutions was stimulated in a provocative way 
when I began graduate work under Professor Henry S. Frank. One of the 
problems which interested him was the effect of solvent structure on the 
thermodynamic properties of  electrolytes. Since water and heavy water have 
nearly the same dielectric constant (e ~ 78), it seemed worthwhile to attempt 
a comparison of the thermodynamic properties of electrolytes in these two 
solvents. Robinson and Stokes (1) had already mapped out the osmotic co- 
efficients of  electrolytes in water; we sought to do the same in heavy water. 
Our chief difficulty then was that an isopiestic standard for electrolytes in 
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heavy water was not available. This prevented our group, 3 at least for a while, 
from measuring the osmotic coefficients of  electrolytes in DzO solutions 
by the same methods that had been so widely and successfully used for electro- 
lytes in aqueous media. It was necessary to start at the beginning and establish 
a suitable standard, a problem which Professor Frank suggested as a worth- 
while topic for a Ph.D. dissertation. ~2~ I accepted, unaware of the troubles 
ahead- -one  of which was so serious that it led years later to a deeper study 
of electrolyte theory- - f rom which I have not recovered. 

The principal difficulty which we ran into arose from the lack of an 
accurate method for the extrapolation to infinite dilution o f e m f  measurements 
on cells containing 2-2 valent electrolytes in aqueous solution. Such an extra- 
polation is usual in the determination of activity coefficients from cell measure- 
ments, but 2-2 electrolytes are particularly difficult to handle because of their 
anomalous properties at high dilution. It  concerned us because of our choice 
of  the following cell as the means of establishing an isopiestic standard in 
heavy water: 

Zn/Hg I ZnSO,(rn), PbSO4(s) Pb/Hg 
(2-phase) l (Solvent: H20  or D20) (2-phase) 

We were guided in this by the existence of earlier investigations of the same 
cell, in which water was the solvent, by Cowperthwaite and LaMer (3) and also 
by Bray. ~4) It  was known that, when the usual precautions had been taken, the 
electrodes were reversible and reproducible. The solubility range of ZnSO4 
in DzO was also wide enough to enable a useful vapor pressure standard for 
electrolytes to be established. Another possibility would have been to study 
an appropriate concentration cell with transference, but the transport  numbers 
of  a suitable electrolyte in D:O solution were not known to the extent (precision 
and range of concentration) that the establishment of an isopiestic standard 
would have required. The zinc sulfate cell seemed an ideal choice, except for 
the problem of extrapolation. 

The manner in which this difficulty was overcome is illustrated in Figs. 
1-3. We made use of two established features of  electrolyte solutions, one 
empirical and the other theoretical. The activity coefficient 7• of an electrolyte 
at a molality m can be represented over different concentration ranges in the 
following ways: 

(1) At low concentrations, not too close to infinite dilution 

In y+_ = a - b m  1 /3  (1) 

where a and b are constants which differ from one electrolyte solution to 
another(5, 6) and m is the molality. 

3 Particularly Robert E. Kerwin who carried out the isopiestic measurements in D20 solvent 
(Ph.D. Thesis University of Pittsburgh, 1964). 
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Fig. 1. Extrapolation of the emf of the 
cell Hz(Pt)[HCI(m), Hg2Cl2(s)lHg(1) to 
infinite dilution by the cube-root method. 
Eo (Guggenheim) is the standard emf 
obtained by conventional methods. (8> 
The data are from Hills and Ives [J. 
Chem. Soc., 318 (1951)]. The figure is 
from ref. 2. 
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(2) As m -~ 0, the Debye-Ht ickel  theory (v~ predicts that  
In  ~_+ = - A m  1/2 (2) 

where A is known f rom the same theory. 
Equat ion (1) is an empirical relation whose generality was unders tood 

but  overshadowed by the arrival of  the Debye-Htickel  theory. (7~ It may  
be confirmed directly, (2~ avoiding the uncertainties in 7~ associated with 
a part icular  extrapolat ion to infinite dilution, by plott ing the function E '  
against m 1/3, where E '  is related to the electromotive force E of  a simple 
reversible cell, containing the electrolyte o f  interest, by 

E" =- E + vk log m (3) 

= Eo - vk  log ~+_ (4) 
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Fig. 2. Extrapolation of the ZnSO4 cell to 
infinite dilution by the cube-root method. 1 
The measurements of Cowperthwaite and 4~c / I~176176 
LaMer, t3> at low concentrations, do not - - (E~  

agree with the independent measurements 
by Bray (4> and Rasaiah. (2~ Figure from 
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Fig. 3. The activity coefficients of ZnSO4 
in H20 and D20 solutions at 25~ 
The quantity m* is the aqua-molality 
of the electrolyte. From ref. 2. 

Here v k  is a constant determined by the temperature and the cell reaction 
and Eo is the standard emf of the cell. When Eq. (1) holds, we can combine it 
with Eq. (3) to obtain 

E ' =  ( E o  - v k a )  + v k b m  u 3  (5) 

which allows direct confirmation of Eq. (1) through emf measurements and 
also establishes b and ( E o -  v k a ) .  Equation (5) is obeyed to within 5-10 
/~V by aqueous solutions of NaC1, KC1, HCI, CaC12, and ZnSO4  .(2) The 
cube-root range for 1-1 electrolytes is from about 3 • 10 -3 m to 0.25 m. The 
range, for 2-2 electrolytes, is shifted to lower concentrations, with the possi- 
bility that the lower limit may lie below the point at which reproducible emf 
measurements are usually possible. When viewed in terms of Eq. (5), the 
determination of  Eo is complete when a is calculated from b. Our determina- 
tion of a from b assumed that the transition from cube-root to square-root 
dependence in concentration of ln?_+ was smooth and that along the cube-root 
line In~+ could be equally well represented by a power series in rn 1/2, with the 
Debye-Hfickel limiting law as the leading term: 

In ),+ = - A m  1/2 4- B m  + C r n  3/a + D m  2 + . . .  (6) 

By truncating this series at the fourth term, equating the result with the expres- 
sion for In 7+_ in Eq. (1), and a slight rearrangement, we arrived at 

b r n  1/3 - A m  1/2 = a - B m  - C m  a/2 - D m  2 (7) 

Since b and A are known, the former from experiment and the latter from 
theory, a was determined by fitting Eq. (7) to the cube-root range. This gave 
us the required Eo for the cell. Nevertheless, the only real justification for this 
highly unorthodox procedure is that, in a crisis, it appears to work. When 
conventional methods of extrapolation are applicable, as, for example, with 
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1-1 electrolytes, the unorthodox method gives results in close agreement with 
the "established" values of Eo (See Fig. l;  the established value is due to 
Guggenheim and Prue/s)) Moreover, when emf measurements fo r  ZnSO4 in 
aqueous solution are treated by the same method/2) the osmotic coefficients 
derived by Gibbs-Duhem integration of ),• agree well with Robinson and 
Jones' independent determination of q~.~9) Accordingly, in the critical situation 
that we faced, the same method of extrapolation was used with the measure- 
ments on the ZnSO4/D20 cell described earlier, and the activity coefficients 
of this electrolyte in heavy water solutions were determined at concentrations 
ranging from 2.5 • 10 -3 m to 2.5 m (see Fig. 3). However, until the theory of 
2-2 electrolytes is well understood, these results, which depend on an assumed 
path to infinite dilution, must, as the following discussion shows, be regarded 
as tentative. 

2. M O D E R N  ELECTROLYTE T H E O R Y  

With a Ph.D. in my pocket and a strong sense of purpose, I felt it was 
time to learn more theory. The opportunity arrived when I moved to Stony 
Brook t o  work with Professor Harold L. Friedman. We were fortunate at 
that time in being able to make use of various approximate methods that had 
been worked out in the statistical-mechanical theory of gases, for example, 
the Percus-Yevick (PY) and hypernetted-chain theories (HNC). ~l~ It was 
known that the PY theory was good for gases; we found that the HNC theory 
was better for electrolyte solutions. But before continuing further, I will 
endeavor to explain, in qualitative terms, how a theory for gases can be 
applied to solutions. 

First, consider gases. It is common knowledge that the pressure of a 
gas has a density expansion and that the virial coefficients can be written in 
terms of the pair-potential and higher component potentials. ~~ 1~) A useful 
property for further study is the radial distribution function g(r). This is related 
to the probability that two gas molecules are at a distance r apart and is 
completely determined, at a given density p of the gas, by the pair-potential 
u(r), by the higher component potentials, and by the temperature T. The 
thermodynamic properties of the gas are available through several alternative 
routes from the radial distribution function. r We depict this schematically 
as follows: 

u(r) statistical / -  v ~ Thermodynamic 
g(r) ( c ~ properties, e.g., 

Model mechanics E ~ pressure, energy 

The letters v, c, and E are abbreviations for the virial, compressibility, and 
energy equations through which the thermodynamic properties may be 
obtained from g(r). Each of these equations yields the same result only for 
the exact g(r). The passage from u(r) to g(r) is chiefly what the statistical 
mechanics of fluids is about. Since the exact solution to this problem is difficult, 
various shortcuts have been tried. One of these is the PY approximation, and 
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another is the HNC approximation.(l~ The Monte Carlo (MC) and Molecular 
Dynamics (MD) methods are alternative routes to the thermodynamic 
properties. (13) They are direct simulation methods which are in principle 
exact, though they require the expenditure of considerably more computing 
time than the other methods mentioned here. But what is of prime importance 
is that they provide, in the best situations, the standards against which various 
theoretical approximations for a model system, specified by a particular u(r), 
can be judged. 

The relationship between the theories of gases and solutions was deduced 
by McMillan and Mayer in 1945. (14) They proved an important theorem 
which states roughly that precisely the same statistical methods used for gases 
can be applied to solutions provided (a) the solution is under an additional 
pressure P, called the osmotic pressure, which maintains it in osmotic equilib- 
rium with the pure solvent under a pressure Po, and (b) the potential energy 
functions for solute molecules, used in the determination ofg(r)  and its attend- 
ant thermodynamic properties, are averaged over the positions and coordinates 
of the solvent molecules. The first stipulation leads naturally to the description 
of the thermodynamic state of a solution in terms of the variables (T, ~ts, cl, 
c2 . . . . .  G) rather than (T ,P ' , rn l , rn  2 . . . .  ,m~). Here el and rnl are the concentra- 
tion (moles per liter of solution) and molality (moles per kilogram of solvent) 
of species i which are a in number, P '  is the external pressure on the solution, 
and Ps is the chemical potential of the pure solvent at a temperature T and 
pressure Po. Osmotic equilibrium between pure solvent and solution ensures 
that ps is also the chemical potential of the solvent in solution at a temperature 
T and pressure Po + P. The transformation from one set of variables to the 
other, in the thermodynamic description of real as well as model electrolytes, 
has been worked out by Poirier(~5)and Friedman. (16) The osmotic coefficient 
in the McMillan-Mayer system (variables T, kt~, Cl ..... G) is defined by 

_= P / & T  (8) 

where k is the Boltzmann constant and c is the total ionic concentration 

c = ~ e, (9) 
t = l  

An important practical consequence of the McMillan-Mayer theorem is that 
all of the approximate theories developed for gases, for example, the PY and 
HNC approximations, can also be applied to solutions provided the answer 
to an additional statistical problem is at hand. This is the one referred to under 
condition (b), the correct formulation of the potential energy Uu for a set of 
ions in an infinite sea of solvent molecules. Assuming pairwise additivity, 
we first consider the pair potential utj(r) for an isolated pair of ions (i , j)  in the 
pure solvent. Since two ions can interact directly as a result of their respective 
charges ei and e j, as well as indirectly through the mediating influence of the 
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solvent molecules, we could depict the more elementary pairwise interactions 
between two ions in the solvent sea as follows: The diagram 

(3 0 

represents the direct interaction (coulomb potential ei ej/r plus repulsion) and 
the diagrams below represent a few of the indirect interactions (e.g., ion- 
dipole-ion, ion-dipole-dipole-ion, plus other combinations as shown, plus 
repulsions between ion-solvent and solvent-solvent pairs): 

In the above diagrams, the open circles denote ions and the solid circles, 
solvent. The potential ui~(r) is the free-energy change in bringing together 
two isolated ions in the solvent from infinite separation to a distance r apart, 
while 

O[flu~(r)]/Ofl (where fl = llkT) and -OutjlOT 

are the corresponding changes in energy and entropy, respectively, for this 
process. If  we idealize the solvent molecule by a hard core plus dipole, we 
arrive at the simplest model in which the total interaction potential contains a 
coulomb term modified by the presence of a dielectric constant different from 
unity in the denominator. There are, of course, additional terms which must 
be added to this to get the complete u~j(r), and even though progress in this 
direction has been made, the results are relatively too recent 4 to have been 
exploited fully in the way that simpler models have been studied. Moreover, 
the representation of solvent molecules as hard core plus dipole may be too 
simple. Nevertheless, we know that the correct asymptotic form of u~j(r) for 
large r is the coulomb potential with the bulk dielectric constant of the pure 
solvent in the denominator. The potential uij(r) now separates in two parts 

uij(r) = u~(r) + e~ ej/er (10) 

where u*j(r) is of shorter range than the coulomb term and includes 
(1) the repulsive part of the direct interaction between two ions; 

4 G, Stell, to be published. 
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(2) the effect of the granularity of the solvent; 
(3) dielectric effects not included in the coulomb term; 
(4) other effects associated with the detailed molecular structure of the 

solvent, e.g., overlap of cospheres; 
(5) van der Waal's and chemical interactions. 

This list is not exhaustive, neither are the categories mutually exclusive, but 
the result of it all is that the solute potential uu(r ) depends on temperature T, 
on the density of the solvent p~, on the pressure Po, and on the molecular 
characteristics of the ions and solvent molecules, for example, the dipole 
moments, polarizabilities, etc. The polarizabilities of the solvent molecules 
and ions contribute strongly to the higher-component potentials, which can 
be included in the formal theory of solutions (at) but have so far been ignored 
in detailed calculations partly because of incomplete knowledge about their 
functional form but principally because solution chemists have been pre- 
occupied with treating the primary interactions accurately. 

The separation of uis(r) into two parts was carried through by Mayer ( : )  
in his application of the theory of gases to solutions. Divergent integrals, due 
to the long-range coulomb potentials, were cancelled by reclassification and 
resummation of the various terms which contributed to the density (i.e., 
solute concentration) expansion for the osmotic pressure. The result of this 
virtuoso feat was a new expansion in which the Debye-Hiickel limiting 
law was the leading term and the higher virial coefficients were functions of 
concentration. The expression for the Helmholtz free energy per unit volume 
to terms up to and including the second virial coefficient is the following: 

e x  . _ _ - ( F  /kr)om.e+,2-- ~r + ~ ~ e, e~ a,s(~:) 
i=i j = l  

(11) 

The second virial coefficients for each pair of ions are simple integrals deter- 
mined by the short-range potential u*(r), the Debye length ~c -~, and the Bjer- 
rum distance e~ efekT.(~s) This approximation is referred to as the D H L L +  B 2 

approximation in the next section where numerical results are reviewed. 
In contrast to the concentration expansion, the expansion in the Bjerrum 

parameter eZ/ekT developed by Stell and Lebowitz (19) (SL) has the following 
leading terms for the free energy: 

F=X/kT = FeX'*/kT + (e2/2ekT) ~ ~ c, cs z~ z, f h,;*/r dr - ~c~/12n + . . .  (12) 
I=I j=l -- 

Here h*. * ,s = ggs - 1, zg is the Valence of ions i, e is the electronic charge, and the 
asterisk characterizes the properties of the uncharged system acting according 
to the short-range potential u*(r). The quantity Ki -1 is a modified Debye length 
defined by 
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) : c,  c j  zt z s f h *  dr (13) 

in which the first term is identically K 2. When the short-range potentials are 
individually the same for all possible pairs of ions (e.g., rigid ions of  equal size 
in a dielectric continuum), electrical neutrality of  the solutions ensures that 
the second term in Eq. (13) is zero when the distinction between /c a and /c 
vanishes. The modification of the limiting law due to the asymmetry of the 
short-range potentials stands in contrast to the modification of the limiting 
law which exists for systems possessing an asymmetry in the ionic charges. "1) 
It  is known that the first two terms in the Stell-Lebowitz expansion form an 
upper bound for the free energy, (2~ so unlike the Debye-Htickel limiting law 
which can be approached f rom above or below as c -+ 0 at fixed T (e.g., 
Z n S O  4 and HC1 in H 2 0  solutions), the limiting law as T---~ oo at fixed c 
must always be approached from one side (e.g., plasmas). 

For the most part, detailed and accurate numerical estimates of  the higher- 
order terms which contribute to the thermodynamic properties of electrolytes 
have been obtained for models in which granularity of the solvent has been 
ignored. The repulsive part  of  the direct interaction is often represented as 
arising from hard cores (21-26) or is assumed to vary inversely as some integral 
power of  the distance. (27,28,45) Additional refinements to the short-range 
potential u~(r) which include a dielectric repulsion term (27, 28) varying as r -4 
and a term arising from the overlap of structurally altered zones around the 
ions (27-a~ have also been considered. (31) For all of  these specialized models, 
the calculation of the second virial coefficient B 2 is relatively easy, (2ab) but the 
higher virial coefficients become progressively more difficult to evaluate because 
of their greater complexity. The convergence of the Mayer expansion for 
aqueous electrolytes is also slow, so that accurate estimates of  the thermo- 
dynamic properties of  a model electrolyte at concentrations in the region of 
1 M are difficult to obtain. 

One way to overcome this difficulty is to abandon the term-by-term 
evaluation of the virial coefficients and to consider instead approximations 
to the radial distribution functions gij(r) which correspond to the summation 
of a certain class of terms which contribute to all of the virial coefficients. 
Hopefully, the terms considered in these partial summations can be chosen 
to be the more dominant ones. The H N C  and PY approximations attempt to 
do just this. Their success or failure for electrolytes cannot be predetermined 
but must be discovered either from the self-consistency of the various thermo- 
dynamic properties computed in alternative w a y s  (22) o r  more directly by 
comparison with Monte Carlo calculations. (32) 

The first complete solutions to the PY and H N C  approximations for the 
primitive-model electrolyte (charged hard spheres in a dielectric continuum) 
were obtained by Carley/21) Shortly thereafter, another version of these 



310 Rasaiah 

approx imat ions ,  derived by Al lna t t  (33) 5 for  electrolytes with their  pecul iar i t ies  
in mind,  (34) was studied,  and  the super ior i ty  o f  the H N C  equa t ion  was estab- 
lished. (22) When  considered as p rob lems  in numer ica l  analysis,  these approxi -  
mat ions  appear ,  at first, not  to be much less s impler  than  the pa ren t  virial  or  
Maye r  expans ion  f rom which they are derived. The added  gain in the a u t o m a t i c  
summat ion  of  d o m i n a n t  terms is offset by  the appea rance  of  a non l inear  
integral  equa t ion  in mat r ix  form,  but  fo r tuna te ly  this can be solved with 
the a id  of  packaged  p rograms  6 and  electronic computers .  A p a r t  f rom its 
accuracy,  especial ly for  lower-valence electrolytes,  the H N C  a pp rox ima t ion  
and the numer ica l  methods  used to solve it are not  specialized to  a given 
shor t - range  potent ia l ,  so tha t  refinements to a model  are readi ly  incorpora ted  
into the general  compu te r  p rograms .  ~27-a~ In a sense, therefore,  this approx i -  
ma t ion  is a powerfu l  tool  in the s tudy of  var ious  models  for  electrolytes.  

Three  o ther  theories which appea red  recently are  charac ter ized  by  their  

r emarkab le  s implici ty and  compara t ive  accuracy,  a l though the results avai lable  
are specialized to the pr imi t ive-model  electrolyte.  The first of  these is the mean  
spher ical  app rox ima t ion  7 (MS) which has been solved by W a i s m a n  and 
Lebowi tz  (24) for  charged  hard  spheres o f  the same size (restr icted pr imi t ive  
model) .  Their  results  for  the excess energy and  the osmot ic  coefficients are 
avai lable  in simple analyt ic  form. Al though  the self-consistency of  the var ious  
osmot ic  coefficients is not  very good,  the excess energy E ~ ' ,  the osmot ic  

5 Allnatt's HNC and PY approximations ~33~ and Mayer's ionic cluster expansion (1~> for the 
free energy are related in the same manner that the original H N C  and PY equations are re- 
lated to the virial expansion for a gas. Both sets of expansions are usually derived from the 
corresponding density expansions for the radial distribution functions. Meeron <~8~ solved 
the problem of reclassification and resummation of the individual cluster integrals in the 
expansion of g~j(r) for ionic solutions in order to avoid the divergences due to coulomb 
forces. The result 

gij(r) = exp(-flui* + qlj + ~ij) 

contains the Debye-shielded potential qij = -el  ej e-~r/ekT as a leading term. The quantity 
cqj is a complicated function for which approximations were derived by Allnatt. These are 
the analogues of the HNC and PY equations solved numerically in ref. 22. The analogue 
of the PY equation is referred to as the PYA equation to distinguish it from the usual PY 
equation. (~~ Such a distinction between the two versions of the HNC approximation is 
unnecessary since they are equivalent and should give the same numerical results. When 
ui*j and eij are neglected and exp (q~j) is linearized, the Debye-Hfickel limiting law results (see 
discussion). 

6 The most useful package (IBM Share No. 3465) is the fast Fourier transform program 
FORT developed by Cooley and Tukey [Math. Computation 19, 297 (1965)]. With 1024 
points in the discrete representation of the Fourier transform, the time for computation is 
reduced by a factor of 60 over the corresponding time for trapezoid rule computation. (22) 
Since these integral equations are usually solved iteratively by Fourier transformation, 
the use of FORT gives an enormous saving in computer time. 

7 The MS approximation for the primitive-model electrolyte is defined by the relations 
gij(r) = 0 r < aij 
Ci~,(r) = -el  e~/ekTr r >ai i  
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coefficients ~b E obta ined via the energy equat ion,  and the corresponding mean 
activity coefficient (32f) ?+,E are especially accurate for 1-1 electrolytes: 

Eex'/ckT = -x [1  + x - (1 + 2x)l/2]/4rca s c (14) 

~b E = ~b "s -I- (4~za 3 c ) - l [ x  -t- x(1 + 2x)  I/2 --~-(1 + 2x) 3/2 + ~ ]  (15a) 

In ~/+,E = ln~ as + E e x ' / c k T  (15b) 

where x = ~ca and the superscript HS denotes the properties of an uncharged 
system of hard spheres of radius a/2 according to the Percus-Yevick theory. 

The second development  is the mode expansion theory of Andersen  and 

Chandler .  (2s) The twin problems of divergent integrals due to the coulomb 

potent ia l  and  the slow convergence of the cluster expansion are nicely avoided 

here. They observed that  since the coulomb potential  has a Four ier  t ransform,  

divergence difficulties arising from the long-range par t  of this potent ia l  can 

be c i rcumvented by working in t ransform space. The divergences at small r 
are avoided by t reat ing the cou lomb interact ions as per turbat ions  to a reference 

system which are dominated  by short-range repulsions. The free energy 
F e~, * of the reference system is assumed to be known,  and F ~x for the electrolyte 

is expressed as an infinite series 

F ~ / k T  = Ve~ '* /kT  + ~ an (16) 
n = l  

in which the a ,  are determined by the per turbing potentials and  the dis t r ibut ion 

funct ions  (two-, three-, and higher-particle) for the reference system, which are 
also assumed to be known,  s 

When the reference system consists of uncharged hard spheres, the per- 

where Cij(r) is the direct correlation function which is related to the radial distribution 
function gij(r) by a 

g~ - 1 = Cij + ~ Ck (. (glk -- 1)Ck~d{k} 
k = l  

Here {k} denotes the coordinates of particle k, whose concentration is Ck, and ~ ...d{k) 
signifies integration over these coordinates. The solution to the MS approximation lies 
in determining g~j(r) for r > aij or, equivalently, Ci~(r) for r < aij. When all the a~js are 
zero, the MS approximation gives the Debye-Htickel radial distribution function. When 
all the charges (e~,ej, etc.) are zero, i.e., when C~j(r) = 0 for r > a~i, the MS approximation 
reduces to the PY approximation for uncharged hard spheres. The MS and PY approxima- 
tions are not the same for the primitive-model electrolyte, a point which we emphasize here 
only because the opposite is implied in statements that have appeared recently in the litera- 
ture. t49~ The MS g~j(r) functions are also different from the corresponding Debye-Htickel 
functions. For instance, because of the inclusion of hard-sphere interactions in the former, 
it gives rise to oscillations in the charge density pi(r) at high concentrations, while the 
Debye-Htickel theory does not. Attempts to bring the thermodynamic properties of the 
two theories into agreement by adjusting the ion-size parameter would therefore seem to be 
difficult to justify. (49) 

8 Equivalent results can be obtained by applying the y-ordering and F-ordering techniques 
ofLSB [J. L. Lebowitz, G. Stell, and S. Baer, J. Chem, Phys. 6, 1282 (1965)] to ionic solu- 
tions. In the LSB formalism, the a, are given by a graphical y-ordering scheme while in the 
Andersen-Chandler theory they are defined in terms of certain collective modes. ~42J 
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turbation within the hard core can be chosen arbitrarily. Chandler and 
Andersen exploited this flexibility and chose the perturbation for r < a 
in such a way as to gain satisfactory convergence of the series within two 
modes (i.e., an up to n = 2). For symmetrically charged primitive-model 
electrolytes, the calculation of the first two modes in Andersen and Chandler 's 
theory is a simple matter in comparison to corresponding efforts needed to 
solve the H N C  equation. The integrals involved in the mode expansion up 
to n = 2 are all one-dimensional, and only the free energy and pair distribution 
function for the reference system are needed. For unsymmetrical electrolytes, 
however, three- and four-particle correlation functions are also required in the 
evaluation of the second mode (a2), which increases the difficulty of  computa- 
tion considerably and explains why results for 2-1 and 3-1 electrolytes a r e  
not readily available. The results for 1-1 electrolytes are comparable in 
accuracy to the H N C  approximation. 

In a later paper, (25c) Andersen and Chandler also describe a criterion for 
optimizing the convergence of the mode expansion when only the first few 
terms are taken into account in numerical calculations. This criterion ensures 
that the distribution functions for physically inaccessible regions (r < a) are 
zero. The perturbation series truncated at n = 1 is called the random-phase 
approximation (RPA), a n d  when Andersen and Chandler 's optimization 
criterion is applied to this, it turns out that the results of  the optimized random 
phase approximation (ORPA) are equivalent to the mean spherical approxima- 
tion provided the reference system obeys the Percus-Yevick theory exactly. 
The addition of the next mode (a2) hence represents an improvement over the 
mean spherical approximation, and we refer to the theory which includes 
this as the MEX theory. We can summarize the relationships between the 
various optimized theories as follows 9 : 

ORPA + a2 with the Percus-Yevick 
= M S  + a2 ~ MEX - O R P A +  a 2  

theory for the reference system 

The assumption about the reference system obeying the PY approximation is 
very good for most electrolytes (e.g., models describing the alkali halides in 
aqueous solution, but not the larger tetraalkylammonium halides) since a 
salt concentration of 1 M corresponds to a very low reduced ionic concentra- 
tion, which implies that almost any reasonable approximation for the reference 
part  of the interaction would be adequate. Since the thermodynamic properties 
in the MS approximation are available in analytic form [Eqs. (14) and (15)] 
only the second mode (a2) needs to be calculated numerically, which is easy 
for symmetrical electrolytes. The problems associated with the difficulty in 
computing a 2 for unsymmetrical electrolytes remain. The accuracy  of the 
mode expansion is improved by optimization, and although Andersen and 
Chandler's numerical results are for the restricted primitive model, it is 
9 If the same optimization is used in the LSB theory (see footnote 8), and the first- and 

second-order F-ordered approximations are abbreviated FOGA and SOGA, respectively, 
then FOGA ~- ORPA, and SOGA -= ORPA + a2 ~ MEX. (42) 
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probab le  tha t  c o m p a r a b l e  accuracy  can be ob ta ined  for  o ther  models  as well 

by explo i t ing  some o f  the techniques developed recent ly in the theory  o f  

fluids by which the t h e r m o d y n a m i c s  of  a real  fluid system is expressed in 
terms of  the p roper t i e s  o f  ha rd  spheres.  (12' 20.35) 

A useful fea ture  o f  the mode  expans ion  theory  is tha t  convergence o f  

the series can usual ly  be assessed by compar ing  the magni tudes  o f  successive 
modes.  Rel iance on expensive M o n t e  Car lo  calcula t ions  or  tedious  self- 
consis tency tests for  conf i rmat ion  of  accuracy  become less essential.  When  
this test is appl ied  to 2-2  electrolytes,  it  is found  tha t  the convergence is less 
r ap id ;  the osmot ic  coefficients, for  instance, are no t  very accurate.  A s imilar  
reduc t ion  in the accuracy  o f  qS, when the ions become more  highly charged,  
also occurs  in the H N C  app rox ima t ion ,  but  at  least  this theory  is qual i ta t ive ly  
correct  in showing the same a n o m a l o u s  effects tha t  2-2  valent  electrolytes  
exhibi t  at  high d i lu t ion  in aqueous  solut ion.  They are also seen in the D H L L  + 
B2 app rox ima t ion  but  do not  occur  in the MS (or O R P A )  or  M E X  (i.e., 
O R P A  + a2) theories.  Hence the second vir ial  coefficient B2 conta ins  an 
ingredient ,  re la ted  to the observed proper t ies  of  2-2  va lent  aqueous  electro-  
lytes, which the second mode  (a2) lacks. Recogniz ing  this, Andersen ,  Chandler ,  
and  Weekes  (36~ a p p e a r  to have combined  the best  o f  bo th  worlds  in their  new 
O R P A  + Bz approx ima t ion ,  m This is the third o f  the new theories ment ioned  

earlier.  
Pre l iminary  Mon te  Car lo  calculat ions  o f  the excess energies o f  2 -2  

electrolytes by  Card  and Val leau indicate  tha t  the O R P A  + Bz and H N C  
approx ima t ions  are o f  comparab le  accuracy (see Table  I). Since Mon te  Car lo  
results for  2 -2  electrolytes  below 0.0625 M are not  yet  avai lable  (and may  be 
difficult to obta inH) ,  it remains  to be seen whether  the energy and other  
t he rmodynamic  proper t ies  f rom O R P A  + B2 are numerica l ly  accurate  in the 

lo We do not mean to imply that the ORPA + Bz approximation was obtained by a simple 
fusion of ORPA and B2. This approximation is embedded in a more elaborate perturbation 
theory in which some of the techniques introduced by Mayer (summation of rings and 
chains) are utilized in writing down equations for F ex and g(r). These are formally related 
to the work of Stell and Lebowitz, ~ but the technique of improving convergence by an 
optimal choice of the perturbation within the hard core is again exploited to obtain 
ORPA + Bz as the leading terms in the cluster expansion for F ex. The B2 term is derived 
using this particular choice of the perturbation in physically inaccessible regions, and 
hence it is not the same as B2 referred to in DHLL + B2. When the perturbations within 
and outside the hard cores are deliberately chosen to be coulombic, then there is no 
difference between the Bz's. In terms of the LSB (see footnote 8) and SL ~ 19) graph-theoretic 
descriptions, the ORPA + B2 approximation could be characterized as an optimized 
second-order nodal-ordered approximation (SONA) where the nodal order of a graph 
is the number of its vertices or hypervertices. The optimized first-order nodal-ordered 
approximation is identical to FOGA (see footnote 9). 

it Usually the accuracy of Monte Carlo calculations for charged systems diminishes when the 
concentration decreases because of an accompanying decrease in the shielding (K becomes 
smaller) which controls the range of the forces between charged particles. This problem 
is particularly acute for 2 2 valent and other highly charged electrolytes. None of the 
currently available Monte Carlo calculations are accurate enough at low concentrations 
(c < 0.025 M) to show the anomalous behavior of 2-2 electrolytes. 
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Table I. Excess Energies a for a 2-2 Restricted Primitive-Model Electrolyte 
(a = 4.2 ~ ,  e = 78.358, t = 25~ 

-EeX'/ckT 

Error (MC theory) 

Molarity b MC r MS a MEX ~ ORPA X? B2 f HNC g 

0.0625 1.893 4- .017 0.43 0.43 -0.13 0.15 
0.250 2.473:5.019 0.29 0.29 --0.08 0.10 
0.5625 2.822 • .008 0.18 0.16 -0.08 0.06 
1.000 3.091 • .011 0.11 0.08 -0. t0 0.05 
2.000 3.509 • .016 0.13 0.04 -0.06 0.02 

Note that (1) EeX'is the excess energy for the primitive model assuming Oe/OT= O. (2) 
MS -~ ORPA; MEX = ORPA + a2 ~ MS + a2. 

b Conventional salt concentration (C2) or half the total ionic concentration (c) for symmetric- 
ally charged electrolytes. [See Eq. (9) for definition of c)]. 

r Monte Carlo calculations of Card and Valleau (quoted in ref. 25c). The errors are one 
standard deviation. 

n Mean spherical approximation (ref. 24). 
e Optimized mode expansion (ref. 25c). 

Optimized random phase + B2 approximation (ref. 36c). 
Hypernetted-chain approximation (ref. 23b). 

region of  high dilution where it could be useful, for instance, in the extra- 
polation of  the ZnSO4 cell to infinite dilution. It is already known (23b) f rom the 
self-consistency requirements that  the osmotic  coefficients of  2-2  electrolytes 
derived from the H N C  approximation are not  very accurate in this region 
(see Fig. 9). The accuracy of  the energy in the same region from this approxi- 
mation is unknown.  

Before concluding this section on current electrolyte theory, we would 
like to mention two other developments. Stillinger and Lovett  (37) have 
developed a theory of  electrolytes in which the ions are formally paired, 
according to a prescribed scheme, into uncharged dipolar molecules. They 
studied the dielectric properties of  this system by considering its response to 
an applied spatially periodic electrostatic field, which led them to a new 
condit ion that  must  be satisfied by the exact pair  distribution functions, called 
the second-moment  condition. 

-6 ~ c, e2= ~:2 fl ~ ~ cic~e, ejg,~(r)r2dr (17) 
1 ~ i  =1  J = l  

This, and the condit ion for local electroneutrality (zeroth-moment  condition) 

-e, =f  j=l ~ cjeig'j(r)dr (18) 

are useful in testing the consistency of  various theories o f  electrolytes. 
range effects in their treatment. This difficulty has recently been corrected. (26b) 
conditions, and Groeneveld ~39) has shown that the H N C  and MS approxima-  
tions belong to a general class of  theories for which the second-moment  
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condition holds exactly. Numerical results for the ion-pair theory are not 
available, but another interesting result, derived in an extension to this work by 
Stillinger and White, (38) is that the local charge density Pl 

pi(r) = ~ c~eig,j(r ) (19) 
j = l  

has an asymptotic form which does not decay exponentially but varies as 
r -8. From this, they conclude that the distribution functions g~j(r) could also 
be expected to have similar tails. None of the theories which involve chain 
summations (e.g., the H N C  approximation) can conceivably give such an 
asymptotic form for p~(r), but the numerical error in the thermodynamic 
properties caused by not having the right shape of tail of  &j(r) is probably 
negligible. 

The other theory, which we would like to mention briefly, deals with 
Outhwaite,s~26.40) improvements to the Poisson-Boltzmann equation in 
which errors due to the omission of a fluctuation term are corrected. The 
errors due to the omission of an excluded volume term (both of these were 
first identified by Kirkwood (41)) are ignored. The modified Poisson-Boltzmann 
(MPB) equation, as it is called, gives energies as good as can be obtained from 
the H N C  equation for 1-1 electrolytes when they are treated as charged hard 
spheres. The osmotic coefficients are less accurate, and Burley, Hutson, and 
Outhwaite(26, 4o) suggest that the difficulty is due to the omission of short- 
range effects in their treatment. This difficulty has recently been corrected. (z6b) 

It may appear from the foregoing discussion of newer theories of  electro- 
lytes that there are now so many that are successful, that there is an embarrass- 
ment of riches in this field. While this is perhaps true, it is unlikely that any one 
theory will be more useful than the others in all ionic solutions (e.g., various 
charge types, different solvent media and temperatures, etc.). The success of 
a theory is more likely to depend on the particular problem at hand. The Mayer 
expansion, for instance, and the Stell-Lebowitz expansion are expansions in 
two different ordering parameters, and the theory of choice in a given situation 
should be the one for which the corresponding parameter is small. 

The convergence of these expansions can be improved by using the 
optimization trick, and it is likely that this innovation, 12 introduced by 
Andersen and Chandler to ionic solutions, will be seen more frequently in the 
future in a variety of different contexts. It is an interesting fact that when the 
Stell-Lebowitz expansion is optimized in the same way as the mode expansion, 
or if the latter expansion is left unoptimized, that is to say, if the perturbation 
within the hard cores is also chosen to be the coulomb potential in both theories, 
then the two theories look more nearly alike in the sense that the first few terms 
are identical for a symmetrical electrolyte. (42) Apparently, optimization, or 
some other judicious readjustment of  the perturbation within the hard 

12 It appears to have been first used in magnetic models where optimization turns out to be 
equivalent to the imposition of the mean spherical constraint. The continuum analogue of 
this constraint is called the mean spherical approximation and its close relationship to the 
optimized approximations ORPA and FOGA is therefore understandable. 
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cores, makes all the difference in numerical estimates of the thermodynamic 
properties. 

3. N U M E R I C A L  RESULTS 

In this section we review the numerical results for some simple model 
electrolytes. The emphasis, for the primitive-model electrolyte, will mainly 
be on the mean spherical (MS) approximation, the optimized mode expansion 
(MEX), and the hypernetted chain (HNC) theory. A few scattered results in 
the ORPA + B2 approximation are also discussed. The HNC properties for 
this model will be compared with experiment, and a minor modification to the 
short-range potential u*(r)  to bring the properties of the model in line with 
experiment for the alkali halides will be considered. What emerges from one 
molecular interpretation of this change is a picture of the environment around 
an ion which is similar to that proposed by Frank and Evans in 1945343) 

The primitive-model electrolyte ~21, 30) (charged hard spheres in a dielectric 
continuum) is characterized by 

u~(r) = ~ if r < atj (20) 
= 0 i f r  >a~j 

where aij is the distance of closest approach of the (i,j)-th pair. The restricted 
primitive model specializes this to hard spheres of the same diameter a. If 
we take the radii of the spheres to be typically about 2.1 A, the ordering 
parameters ca 3 and e_e+/ekTa are 0.09 and 1.7, respectively, for a 1-1 
salt in aqueous solution at a concentration of 1 m with the temperature at 
25~ The reduced ionic concentration ca a is so small that the equilibrium 
properties of the corresponding uncharged system are well described by the 
PY or HNC approximations and, for that matter, even by the virial expansion 
for the excess free energy F ~' r~s carried no further than the third virial co- 
efficient. The potential-energy functions u~j(r) for this model depend on the 
temperature T and the pressure Po even when the diameters of the spheres are 
fixed for all temperatures and pressures because the solvent dielectric constant 

is a function of these two variables. 
In Fig. 4 wehave the osmotic coefficients qSv and excess energies E e~' cal- 

culated from the HNC approximation. Comparisons with other theories, 
including various internal tests of the self-consistency in the same theory, 
are made in Figs. 5-10. Wherever possible, we also compare these with the 
Monte Carlo calculations of Card and Valleau. ~32~ The main conclusions are 
the following. 

The HNC and MEX osmotic coefficients are both excellent for 1-1 
electrolytes (Fig. 5); the energies in both theories are also accurate (Fig. 6), 
although the HNC predictions are slightly superior in the concentration range 
where the MEX theory converges to the MS approximation. This discrepancy, 
which occurs at low concentrations, is accentuated for higher-valence electro- 
lytes (Table I). For 1-1 electrolytes, the ORPA + B2 approximations for ~b 
and E ex' agree almost exactly with the Monte Carlo calculations up to salt 
concentrations of 2.0 m. ~36a~ 
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Fig. 4. Thermodynamic properties of  charged hard spheres of radii 2.1 ~ according to the 
HNC approximation. The curves are labeled according to the charges on the ions. The 
osmotic coefficients were all obtained via the virial equation. The concentration e is the total 
ionic concentration. From ref. 23a, 
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Fig. 5. Osmotic-coefficient results for a l - I  electrolyte compared on an enlarged scale as the 
difference from the mean spherical prediction calculated from the energy equation [Eq. (15)]. 
The s,qbscripts E, v, and c refer to the energy, viria], and compressibility equations which 
provide alternate routes to the osmotic coefficients. The Monte Carlo error bars show three 
standard deviations, The quantity cz is the conventional electrolyte concentration; for a 
1-1 electrolyte the total ionic concentration c = 2c2. From ref. 32f. 
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Monte Carlo error bars are • standard 
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Fig. 7. Osmotic coefficients for l - l ,  2-1, and 
3-1 restricted primitive-model electrolytes 
according to the HNC and MS approximations. 
The subscripts E, v, and c* have the same 
meaning as in Fig. 5. The concentration c is 
the total ionic concentration. From ref. 23b. 
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Fig. 8. Osmotic coefficients for a 2-2 restricted 
primitive-model electrolyte according to the 
HNC, MS, and MEX theories. The subscripts 

2.4 have the same meaning as in Fig. 5. From ref. 
23b. 
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Fig, 9. Deviations from the Debye-Ht i cke l  

limiting law for the energy and the osmotic 
coefficients of  a 2-2  electrolyte according to 
several theories. AO = ~b(theory) - ~b(DHLL) 

and AE ~x = E~*(theory) - E ~ ( D H L L ) .  The re- 
sults for the MEX theory are indistinguishable, 
in this concentration range, from the curves 
labeled MSE. The MS approximation for 
E~/I does not distinguish between 1-1 and 2-2  

electrolytes. The quantity I is the ionic strength. 
E ~" = E ~ (1 + 0 In e/O In T). F rom ref. 23b. 
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The accuracy of ~b in all of these theories diminishes as the charges on the 
ions are increased. For example, the discrepancy between ~b v and qSc at a total 
ionic concentration c of 2.0 m increases from 0.002 to 0.007 to 0.01 in the 
HNC approximation when the charges on the ions are changed progressively 
to correspond to 1-1, 2-1, and 3-1 valence types, respectively (Fig. 7). These 
numbers pertain to the same restricted primitive-model electrolyte in which 
a = 4.2 A, t = 25~ and ~ = 78.358. The difference betwee~ 4)v and ~bc for 
the corresponding 2-2 electrolyte (Fig. 8) is, of  course, still greater, but the 
HNC equation produces the correct sign for the deviations o f  ~b from the 
Debye-Htickel limiting law (Fig. 9). Neither the MS approximation nor the 
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Fig, 10. The excess energy calculated from the HNC and MS approximations. Monte Carlo  
calculations of Card  and VaIleau for 2-2 and 3-1 electrolytes are also shown. From ref, 23b. 
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MEX theory possesses this property which is usually regarded as a manifesta- 
tion of ion association. Unlike Bjerrum's treatment of this problem in which 
a more-or-less arbitrary separation of ions into associated and free ions is 
assumed, the HNC approximation, and certain others discussed below, 
produce qualitatively~he same results as the classical association theories by 
allowing the ions "to do their own thing." That is to say, no association is 
assumed or introduced into the model. The DHLL + Bz approximation also 
possesses this property, although its accuracy is limited at higher concentra- 
tions. From the  nature of the ORPA + B2 approximation, it is clear that the 
osmotic coefficients for 2-2 electrolytes must also be qualitatively correct. 
It is difficult to be more specific about the accuracy of the osmotic coefficients 
for higher-valence electrolytes, since no detailed estimates are available. 13 
Numerically the theory should be an improvement over the MS approximation, 
and we expect the osmotic coefficients for highly charged electrolytes to be 
better than in the MEX theory because Bz unlike a2 does not break down at 
low concentrations. 

Returning now to the energies, the HNC and ORPA + B2 predictions 
appear to be generally very good (Table I and Fig. 10). For 2-2 electrolytes 
this conclusion is at present restricted to concentrations above 0.0625 M, the 
lowest concentration at which Monte Carlo results are currently available 
for direct comparison (see footnote 11). While it is safe to assume that the 
accuracy in the energy persists all the way to infinite dilution for less highly 
charged ions, it is by no means safe to draw the same conclusion for 2-2 
electrolytes because of the irregularities at lower concentratioias. What is at 
issue here is the magnitude of these irregularities; none of the qualitatively 
correct theories depicted in Fig. 9 seem to agree on this point. Going back to 
the energies above 0.06 M, since 

49 v = (2n/3c) ~, ~ cl cjglj(a~j +)air+ EeX'/ckT (21) 
i = l j = l  

for the primitive-model electrolyte, the failure of the HNC ~bv for highly 
charged species can be traced to a deterioration in the accuracy of the first 
term of Eq. (21), called the Contact term. It can be verified from Fig. 11 that 
this deterioration is related to the enormous increase in the distribution func- 
tions at contact for oppositely charged ions when the charges are increased. 
Since the energies are generally accurate, one method of getting better osmotic 
coefficients for 2-2 electrolytes would be through the energy equation: 

B 
4~e = ~ b"s + (0/0 In c)[(1/c)SEeX'dfl] (22) 

0 

This aspect of numerical work with the HNC approximation for electrolytes 
has not been explored; it has been investigated in the MS approximation 

~3 The ORPA + B2 osmotic coefficients and excess energies of higher-valence electrolytes, 
including 2-1 and 3-1 charge types, are being analyzed by S. Hudson and H. Andersen 
(private communication from H. Andersen). 
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Fig. 11. Distribution functions at contact for oppositely charged ions calculated in the 
HNC theory as a function of the total ionic concentration c. From ref. 23b. 

where it is known that the energy equation [Eq. (15)] gives the best results. A 
similar conclusion has been drawn in applications of  the PY theory to Lennard-  
Jones fluids. ~4+> 

It is important to realize that our criticism of the relative merits of various 
theories is actually derived from the study of  models that are useful in des- 
cribing the properties of aqueous electrolytes consisting of fairly small ions 
at room temperature. Our analysis does not necessarily apply to other systems 
also; for instance, the osmotic coefficients from the HNC theory deteriorate 
more rapidly at higher concentrations if the ions are very large. Nevertheless, 
the theory has been found useful and accurate enough in the investigation of  
models which predict the thermodynamic properties of  tetraalkylammonium 
halides at concentrations below 0.4 M. t+s> 

One other aspect of  the equilibrium properties of  electrolytes which has 
been investigated is the oscillations in the charge density pi(r) which have 
been predicted to occur at some critical concentration346, 26) The second 
moment condition also implies this when there are hard-sphere interactions, t37) 
although the prediction there is more an upper limit to the critical concentra- 
tion at which oscillations must appear. Hard-sphere interactions are absent 
in the limiting Debye-Hfickel theory, hence no oscillations appear even 
though both moment conditions are satisfied. Oscillations in pi(r) have been 
found in the HNC approximation ~23) and also in the modified Poisson- 
Boltzmann equation of Outhwaite. re6) In Fig. 12 we demonstrate these 
oscillations in the HNC theory for various ionic charges in the same primitive- 
model electrolyte at the same total ionic concentration. Since the radii of 
positive and negative ions have been chosen to be the same, the oscillations 
in the reduced charge density s* defined by 

s* = -apl (r )  4rrr2/e, (23) 
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Fig. 12. Oscillations in the charge density for four restricted primitive,model electrolytes 
at the same total ionic concentration of 4 M. The electrolytes differ only in the charges on 
the ions. From ref. 23b. 

cannot be due to sorting or filling in of  interstitial holes, the behavior that 
one might expect in a mixture of spheres with grossly different radii. The 
origin of  these oscillations lies in the attractive and repulsive coulomb inter- 
actions superimposed on the hard-sphere repulsions that are assumed to be 
the same for all pairs of ions. 

We turn now to a consideration of the relevance of various models to the 
properties of  real electrolytes. In doing so, we recognize the ready adaptability 
of the H N C  equation to modifications of the short-range potential. A cursory 
examination of the osmotic coefficients for the primitive model, with various 
ion sizes (Fig. 13), shows that it is a plausible description of some simple real 
electrolytes, namely, the alkali halides in aqueous solution. The primary effect 
in this model, as expected for a given set of ionic charges, is determined by the 
distance of closest approach a+_ of oppositely charged ions. An infinite number 
of  combinations of additive ionic radii which correspond to the same a+_ is 
possible, but they are only relevant to the magnitudes of the osmotic coefficients 
at higher concentrations, where a disparity in the sizes of  the ions induces a 
proportionately larger excluded-volume contribution to 4). On choosing 
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Fig. 13. The theoretical (HNC) osmotic coefficients ~b for a range of ion-size parameters 
in the primitive model compared with experimental data for aqueous solutions of alkali 
halides at 25~ The curves are labeled according to the value assumed for r+ + r_ = a+_. 
The experimental results have been corrected to the McMillan-Mayer standard states. 
From ref. 30. 

a+_ to  fit the  e x p e r i m e n t a l  d a t a  a t  l ow  c o n c e n t r a t i o n s ,  it is f o u n d  tha t  a ccu ra t e  

ca l cu l a t i ons  give o s m o t i c  coeff ic ients  t ha t  a re  t o o  la rge  at  h ighe r  concen t r a -  

t ions .  Th i s  is in c o n t r a s t  to the  D H L L  + B2 a n d  o t h e r  less a ccu ra t e  a p p r o x i m a -  

t ions  wh ich  p red ic t  o s m o t i c  coeff ic ients  t ha t  a re  t o o  low (Fig.  14). Since  the  

i n t r o d u c t i o n  o f  u n e q u a l  radi i  ( hav ing  the  co r r ec t  r+ + r_ to fit the  d a t a  at  l ow  

~b r I i i i 

1"04 NaCI 25~ a__=a+.=a++= 3"9A 
HNC ,.oo Z 

9 6  E x p t  

"92 ~DHLL+B2 

i I !6 i �9 a .+ .a ,!o dT 

Fig. 14. Osmotic coefficients for the primitive-model electrolyte compared with the experi- 
mental data for NaC1 in aqueous solutions at 25 ~ The a+_ parameters in both the HNC and 
DHLL + B2 approximations have been chosen to fit the data below 0.05 M. The ~b's from the 
DHLL + BE approximation are similar to those obtained in the extended Debye-Hiickel 
theory. From ref. 30. 
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concentrations) will only increase the discrepancy between accurate theory 
and experiment, the indication here is that the model must be changed. This 
is so not only for NaCI but also for all the other alkali halides (zza, 3o) except 
the fluorides, which have not been studied. 

Now there is a great range of possibilities for acceptable models, but it 
seems expedient, as in any preliminary and costly exploration, to proceed 
systematically according to some plan. The plan is to retain the notion of 
harsh repulsions between the ions at very small distances but to introduce an 
additional effect further away which will reduce the discrepancy between 
theory and experiment at higher concentrations. To complete the picture, 
however, these changes must be self-consistent for a given family of electro- 
lytes; they must also be amenable to interpretation at a molecular level. 

A simple model which is found to fit these requirements, at least partially, 
is the square-well (or square-mound) modelJ 29' 3o~ The short-range potential 
u*(r) is defined by 

u*(r) = dlj if a~j < r < bi~ 
=or  i f r < a i j  
= 0 if blj < r 

(24) 

Also, dia is positive for a mound and negative for a well. If we assume that the 
distance aij is the sum of Pauling radii for the ions i and j  and that bij - a~a = 
2.76 A, which is approximately the width of a water molecule, then the only 
adjustable parameters are the mound heights d~j-. These may l~e correlated 
with the free-energy changes accompanying the displacement of water between 
two ions when they make contact in a sea of solvent molecules containing no 
other ions. The empirical finding is that the osmotic coefficients are determined 
primarily by d+_. Hence, in effect, there is only one adjustable parameter in 
the calculation of the osmotic coefficients for this model. 

When the effects of the mound heights are suppressed by setting them all 
equal to zero, the thermodynamic properties correspond to a primitive-model 
electrolyte in which the ions are assumed to have the Pauling radii. The 
difference Aq~ between experiment and theory is shown in Fig. 15, and since the 
primary effect in this instance is determined by r+ + r_, the general picture will 
not be altered by the use of any other set of self-consistent ionic radii which 
are derived from crystallographic measurements. Roughly speaking, the order 
of  the osmotic coefficients is the same whether we look at Fig. 13 or Fig. 15. 
Since the effects of long-range coulomb interactions and harsh repulsions have 
been deleted in Fig. 15, the sign of A ~b is consisten~t with Gurney's hypothesis (r 
that the order in which the osmotic coefficients at a given concentration 
decrease within a family of electrolytes is also the order'in which the cospheres 
around oppositely charged ions change from dissimilar to similar character. 
In any event, it is obvious that what is required for closer agreement with 
experiment in the square-well model is a positive d+_ when Aq5 > 0 and a 
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Fig. 15. The quantity zl~ as a function of 
ionic strength I at 25~ where &b = ~(exp)- 
~b(Pauling), where ~b(Pauling) is the theo- 
retical osmotic coefficient in the primitive 
model with the ion radii equal to the Pauling 
radii. From ref. 30. 
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negat ive one when AqS < 0. F igure  16 gives us some idea of  the success tha t  can 
be achieved in fi t t ing the osmot ic  coefficients of  the a lkal i  hal ides using d§ 
as the only ad jus tab le  parameter .  (3~ The magni tudes  o f  d+_ are all plausible ,  
and  it is na tu ra l  to in terpre t  a large posi t ive d+_ as signifying s t rong hydra t ion  
for  at  least  one of  the ions. More  generally,  o f  course,  these pa ramete r s  may  
be taken  to reflect changes tha t  occur  dur ing the over lap  of  cospheres a round  
the ions. The t empera tu re  coefficients o f  the d u parameters  will be expected 
to cont r ibute  to  the excess energy E ex which is related to the heat  o f  di lut ion.  
This arises f rom the fact that  E ex is de te rmined  by the integral  o f  O[~uu(r)]/O ~ 
t imes the d is t r ibut ion  funct ion gu(r) mult ip l ied  by r z, whereas the cortes-  

Fig. 16. Theoretical (HNC) osmotic coefficients 
for the square-well model compared with experi- 
mental data for aqueous solutions of the alkali 
bromides at 25~ The parameters assumed for 
this model are a u = r~(Pauling) + ri(Pauling), 
d++ = d__ = 0, and d+_ as indicated in the figure. 
From ref. 30. 
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ponding expression for the osmotic coefficient contains O[u~j(r)]/Olnr instead 
of the derivative with respect to fl = 1/kT. Now 

O(~u,j)/O~ = (e~ ej/er) [1 + (0 In ~/0 lnT) ] + O[~u~(r)l/OB (25) 

where we may again write 

O[flu~(r)]/O[3 = u*(r) - TO[u~(r)]/OT (26) 

in which u~(r) and -Ou~(r)/OTare the short-range contributions to the changes 
in free-energy and entropy associated with the overlap of the cospheres and the 
interpenetration or entanglement Of two ions. In the square-well model the 
temperature derivatives of the d~j parameters determine the entropy changes, 
and again the empirical finding is that the primary effect is due to O(d+_)/OT. 
Using this as the only additional parameter, it is found that the theory can 
be fitted to the experimental heats of dilution. (3~ The agreement, as may be 
seen from Table II, is reasonable for all except the lithium salts. The difficulty, 
however, is with the sign of Od+_/OT. They are all positive, which signifies 
a negative contribution to the entropy of overlap--the opposite of what one 
might expect from a process which involves the expulsion of the water of 
hydration into the bulk solvent. This paradoxical sign for the entropy change 
is also found in more refined models for the same alkali halides. ~zv~ One 
explanation of this is that since a possible second layer of disrupted water 
molecules around the inner hydration sheath is not represented explicitly in 
the square-well model, it does so implicitly in the sign of Od+_/OT when the 
model is forced to fit the experimental data. (3~ This explanation supports 
the picture due to Frank and Evans (43~ that there are generally two concentric 
regions of frozen and melted water around an ion. The outer regions then 
contribute overwhelmingly to E ex and the inner regions contribute pre- 
dominantly to ~b for all the alkali halides except cesium salts (d+_ < 0). An 
alternative interpretation, due to Ramanathan and Friedman, (2v) is based on 
the idea that the model parameters also reflect changes in properties of the 
water remaining in the cospheres outside the overlap region. 

The refinements introduced by Ramanathan and Friedman include a 
softer core repulsion term (CORgi) varying a s  r -9, a cavity term (CAV~j) 
which embodies a dielectric repulsion effect varying as r -4, and a Gurney 
term (GUR~j) which represents the contributions from the overlap, of co- 
spheres: 

u~(r) = CORtj  + CAVIj + GURij (27) 

The first two terms in Eq. (27) are repulsive, while the Gurney term may be 
attractive or repulsive. The effect of the cavity term, as formulated by Rama- 
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nathan and Friedman, is small. The only adjustable parameters in the calcula- 
tion of the osmotic coefficients from this model are the coefficients A~j of  
the Gurney term 

GURi j  = A~j V w'  V,,~(r) (28) 

where V,,u (r) is the mutual volume of overlap of  the cospheres and V w is the 
molar volume of the pure solvent. The Aij coefficients correspond roughly to 
the dij parameters in the square-well model. The temperature derivatives 
-OA~j/OT are also required in the calculation of the excess energy, while the 
set {OAJOPo} is the additional requirement in estimating the excess volumes. 
The thermodynamic properties of aqueous alkali halide solutions can be fitted 
very nicely to this model. The model has also been applied to the study of mixed 
electrolytes (LiC1) (2as) and (NaC1-MgCI2) (28b) and exhibits certain empirically 
established regularities (Harned's rule, Young's rule, and the observation that 
the sum of  the Harned c~ coefficients is a linear function of the ionic strength). 
The properties of  this model, calculated from the HNC approximation, have 
been extensively reviewed elsewhere, (al) and will not be discussed further except 
to mention an interesting new application to tetraalkylammonium halides. (45) 

The Gurney coefficients A~j. required to fit the osmotic data for two 
tetraalkylammonium bromides are reproduced in Table I I I  together with the 
parameters S~j = - O A U O T  and V~j = OA~JOPo required to fit the excess 
energies and volumes. A__ and its derivatives with respect to temperature and 
pressure are assumed to be zero. The model fits the experimental data obtained 
by J. C. Ku <4s) in Prof. Frank's  laboratory, shown in Fig. 17. The interpretation 
of the Gurney parameters is complicated since the extent to which chain 
deformation and entanglement and the interpenetration of ions contribute 
implicitly to the Gurney term is unknown. What  is known is that the Gurney 
term overshadows the coulomb term at distances close to contact. 

TableI I I .  Gurney Parameters for Two Tetraalkyl- 
ammonium Bromides (Fig. 17) a 

Electrolyte Et4NBr Bu4NBr 

A++ -120 -93 
A§ -173 -210 
A__ 0 0 
TS+ + 160 280 
TS+_ -78 -6 
V++ -9.6 -14 
V+_ 2.1 0,2 

"Energies in calories per mole and volumes in microliters per 
mole. A__ and its derivatives with respect to T and Po are 
assumed to be zero. (From ref. 45.) 
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Fig. 17. The theoretical (HNC) osmotic 
coefficients in a refined model compared 
with the experimental data of Ku (48) 
for two tetraalkylammonium bromides. 
The data are represented as full lines 
and the HNC values for the model by 
discrete points (from P. S. Ramanathan, 
C. V. Krishnan, and H. L. Friedman, 
ref. 45). 
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It is useful to inquire to what extent some of the refinements to the 

primitive model can be elucidated by methods that are simpler than those 
described here. The H N C  approximation, though generally accurate, especially 
for lower-valence electrolytes, is expensive and requires the services of  a 
computer with a fairly extensive memory.  When the results for the primitive 
model are at hand, however, the significance of various modifications to the 
short-range potential can be determined by a simple first-order perturbation 
theory. (2~ We illustrate this by returning to the square-well model, where we 
consider the well depth to be the perturbation to a reference system consisting 
of  charged hard spheres. The perturbing potential is equal to d~j when 
a~j < r < bii and is zero otherwise. Then an upper bound for the excess free 
energy per unit volume F ex in the square-well model is given by (2~ 

Fe~/ekV~<F'Xg/ckV+(2n/ckT) ~ ~ c, cjd, f'SgO(r,c)r2dr (29) 
l = l  J = l  alj 

where the superscript zero refers to the properties of the charged hard-sphere 
system. Since accurate H N C  computations for both these models are available, 
the upper bound given to ther ightof  theinequality sign above can becompared 
with the essentially "exact" H N C  results for the square-well model. This is 
done in Fig. 18; the results are from ref. 20. At 2 M the two calculations differ 
by 3.3 ~o; the error could be reduced further by calculating the next term in the 
perturbation theory, but this would be more difficult to compute. Instead of 
using the H N C  approximation for the reference system, it may be more 
convenient in future applications to use some other variant such as the MS 
approximat ionor  the ORPA + B2 (for F ~, o) in conjunction with the exponen- 
tial approximation [for o r gij( )] developed by Andersen, Chandler, and 
Weeks.(36) 
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__Ftx -0.1 CkT 
- 0 2  

NaCl Paullng radii 

d+_ E 0.25 kT 

~ ~ p p e r  bound 
~ ' ~ " r  E xoc~ 
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Fig. 18. The excess free energy per unit volume F eX in the square-well model calculated by 
two different methods. The model parameters fit the expe~mental F ex data for aqueous 
solutions of NaCI at 25~ A first-order perturbation theory gives an upper bound for F ex 
with a maximum error of 3.3 ~ at a stoichiometric concentration cz of 2 M. From ref. 20. 

4 .  D I S C U S S I O N  

It  is apparent that several useful methods are now available for elucidating 
the equilibrium properties of model electrolytes. Because of the accuracy of 
these methods, it is possible to conclude that discrepancies between theory and 
experiment are due to deficiencies in the model rather than deficiencies in their 
statistical treatment. The generality of  the methods described also makes it 
possible to consider changes in the model. So far, these changes have been 
influenced by what we have learned about the weaknesses of simple models, 
especially when they are applied to a wide range of thermodynamic properties 
that are influenced in different ways by different parts of  uij(r) and its deriva- 
tives. Changes in the model have also been made on the basis of  our (as yet 
incomplete) knowledge of the exact u~j(r) and also on the basis of  intuition. 
The latter has undoubtedly been strongly influenced by speculations about the 
behavior of  ions in solution, which have helped to systematize the thermo- 
dynamic properties of electrolytes. NOthing like an a priori  calculation of 
the potential of  average force u~j(r) has yet been possible, but if it were possible, 
then the methods described earlier can be relied upon to reproduce the thermo- 
dynamic properties of  the model with a fair degree of certainty. 

One of the shortcomings of the primitive model (and all of  its refinements 
discussed here) is that the granularity of  the solvent has been ignored. The 
solvent is represented as a continuous dielectric medium characterized by a 
macroscopic dielectric constant e, and the effect of the detailed molecular 
properties of  the solvent and ions have been included in refinements only in 
an approximate way. Friedman (16) 14 has recently discussed the existence of a 
contribution to the solute potential of  average force from the packing require- 
ments of  solvent molecules. We will consider very briefly this and other aspects 
of the problem in electrolyte theory. 

~4 For an earlier discussion, see E. A. Guggenheim, Disc. Faraday Soc. 15, 66 (1953). 
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To simplify the numerical part of the problem, we treat the ions and 
solvent molecules as hard spheres of equal radii. Typically, we can take the 
diameters of these molecules to be 2.76 A, which is equal to the width of a 
water molecule and is close to the sum of the Pauling radii for sodium and 
chloride ions. If the reduced solvent density is p*, then solvent granularity 
requires Eq. (20) to be replaced by 

HS HS - 
~(r) = ~A~) + w~ tp~, ~) 

= - k T l n  g .S (p . ,  r) 
(3O) 
(31) 

where vHS(r~j, j is the solute-solute hard-sphere potential, gHS(p*,r ) i s  the hard- 
sphere distribution function at a reduced solvent density p*, and the perturba- 
tion w~ s (r)to the primitive model is defined by Eqs. (30) and (31). [gHS(p*,r) 
at p* = 0.7 is drawn in Fig. 19.] The generalization of Eqs. (30) and (31) to 
other systems (not necessarily hard spheres) in which all solute-solvent 
interactions are the same as solvent-solvent interactions is straightforward 
but evidently for all of these systems, including the specialized one described 
here, e = 1, since there is no charge-dipole interaction. Stell (see footnote 4) 
has recently included this contribution also in his discussion of a model which 
he describes as the exact ion-solvent interaction model (EISIM). The solvent- 
solvent interactions are idealized as in the primitive model, but what is of 
special interest is that there is a cavity term (varying asymptotically as r -4) 
and a Gurne~r term associated with ion-dipole-ion interactions which contri- 
bute to uij(r) (recall the indirect interactions between two isolated ions dis- 
cussed earlier in Sec. 2). 

One way to determine the effect, on the thermodynamic properties, of 
additional terms in the potential of average force uij(r ) is by simple perturbation 
theory in which the primitive model, for instance, is the refervnce system. 
This exactly parallels the treatment of the charged square-well model by 

40 

50L 

i 

0 ~ - - - - -  
I0 r4 18 22 26 3.0 35 

C rlO) 

Fig. 19. Monte Carlo radial distribution functions for hard spheres at a reduced density 
p* = 0.7 which corresponds crudely to liquid water regarded as hard spheres of diameter 
2.76 ~.. Monte Carlo data from Barker and Henderson. (See ref. 50.) 
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POTENTIAL OF AVERAGE FORCE AT INFINITE DILUTION 

a=2.75,~,  ,~= 78 .358 ,  Ps* ~0 .7 ,  ~= 25~ 

k \ 
\ 

\ +4- 
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- 4 . 0  f!O ~ 31.0 I I 5.0 
r/a 

Fig. 20. Modification of the potential of average force for two ions due to solvent granularity. 
Both the ions and the solvent molecules (when granularity is invoked) are assumed to be 
spheres of diameter 2.76 A. Upper curve: fluu(r) for like ions in continuous (-- -) and granular 
( ) solvent media; center curve: - k T l n  g~S(r) as a function of r for the solvent at p* = 0.7 
(see caption for Fig. 19); lower curve: #uu(r) for oppositely charged ions in continuous and 
granular media. The dashed (---) lines in the upper and lower curves represent the coulomb 
potential (el ei/er). This is added to the dashed part of the central curve to get the modification 
due to granularity. 

per turba t ion  theory. (2m Another  possibility is to solve the H N C  or MS 
approximat ions  directly for the more elaborate potentials of average force. 

To get some idea of the magni tudes  of the changes in uu(r),  we present in 
Fig. 20 the effect of  granular i ty  on the solute potent ial  of  average force. The 
solute potentials  in Fig. 20 will be exact for a nonpo la r  granular  solvent  
(e = 1) conta in ing  two ions of the same size as the solvent molecules but  with 
charges equal to ei/78.3581/2. For  a polar solvent (e = 78.358) conta in ing  ions 
of charge ei, we may consider Fig. 20 to depict only that  part  of the deviations 
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from the primitive model caused by solvent granulari ty.  15 Since there are 

attractive and repulsive cont r ibut ions  from this source, the net effect on the 

osmotic coefficients has yet to be learned from detailed calculations. (49) 
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D I S C U S S I O N  
Professor K. S. P i t ze r  (University o f  California, Berkeley). In  l o o k i n g  o v e r  

s o m e  o f  this  ve ry  impress ive  w o r k  r e p o r t e d  by Prof .  Rasa i ah ,  I have  no t ed  the  
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transfer of the new statistical-mechanical methods from gases to solutions. 
It occurred to me that it might be interesting--and 1 hadn't  seen it done except 
numerically by Card and Valleau--to put the Debye-HiJckel distribution in 
the pressure (or osmotic) equation in statistical mechanics. This is a way of 
including the hard-sphere effects. The old charging-process method could 
not deal with the hard-sphere kinetic effects, and therefore it was completely 
defective in that term. Also, one uses the usual power series expansion in 
which, as the exponential is expanded, the first term gives a hard-core effect 
but no electrostatic effect. The second term gives the typical Debye-Hiickel 
effect, but this effect is not numerically or quantitatively the same if one 
uses the pressure equation instead of the charging process, although the limiting 
law is the same. For symmetrical electrolytes without any inconsistency, the 
third term in the exponential expansion which gives a hard-core contribution 
can be included. It is a quite simple analytical formula which, in fact, agrees 
well within the computational error of the Monte Carlo results up to about 
0.5 m and probably up to about t m. Also, for the case of  the Monte Carlo 
calculation with a 4.25 A distance of closest approach, I notice that this fits 
the empirical data for HBr essentially accurately. 

The formula for the osmotic coefficient is 

dp - 1 = - z  2 lK/6(1 + xa) + c[2naa/3 + naz412/3(1 + Ka) z] 

where ~: = (4rcl)l/2zc I/z and l = eZ/DkT. Thus, a three-term formula is obtained, 
and the third term involves an ionic-strength dependence of the second virial 
coefficient. It is a very simple result which is implicit numerically in the pre- 
sentation of Card and Valleau of their Monte Carlo results but has this 
simple analytical form which I think may be of some use. 

The other topic which I hope we could discuss Is the question of how close 
the primitive model with adjustable radius will come if you take a little bit of 
liberty in the most dilute region. I have checked out HBr with the 4.'25 A and 
it fits really quite well. I was wondering, for other solutes and for slightly 
smaller radii, if you do not commit yourself to perfect fit of  the apparent data 
around 0.01 m, how close a fit can be obtained at a little higher concentration ? 

Professor Rasaiah (University o f  Maine, Orono). In their paper on Monte 
Carlo calculations for 1-1 electrolytes, Card and Valleau [J. Chem. Phys. 52, 
6232 (1970)] compared their results with several approximate theories. The 
HNC approximation was found to be very satisfactory, but they also dis- 
covered that the nonlinear Debye-Hiickel approximation (DHX) was quite 
good (for 1-I electrolytes) when the osmotic coefficients were calculated using 
the virial equation. The DHX approximation assumes that the radial distribu- 
tion function g~j(r), at distances larger than the contact distance, is given by 

g,j(r) = exp[-z:  eO~(r)/kTJ (Dl)  
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where ~b~(r) is the average electrostatic potential calculated in the Debye- 
Hiickel theory. The term 4~(r) is obtained as the solution to the linearized 
Poisson-Boltzmann equation which is derived by combining the Poisson 
equation with an approximation for g~j(r) given by the first two terms in the 
series expansion of Eq. (1). The Debye-Hiickel limiting law results when the 
analysis is completed in a self-consistent way, but if the Debye-Hfickel 
~ ( r )  is used in Eq. (1), the results for the thermodynamic properties calculated 
in various ways are not concordant. For instance, the osmotic coefficients 
obtained with the compressibility equation would be quite different from those 
obtained using the virial theorem or one of the charging processes. I think the 
extension to the Debye-Hiickel theory proposed by Prof. Pitzer will run into 
the same difficulties since he proposes using the Debye-Htickel ~b~(r) with the 
first three terms in the expansion of Eq. (1). 

In reply to the second point raised by Prof. Pitzer, it might be possible 
to fit the primitive-model osmotic coefficients to experiment quite nicely at 
higher concentrations if one does not pay too much attention to the closeness 
of fit at low concentrations; but over the whole preparative concentration 
range, the primitive model seems to be a poor representation of most electro- 
lytes. 

Professor H. S. Frank (University of Pittsburgh). There could be different 
purposes to be entertained here. One has to do with the kind of formalism that 
fits the data and the other is to describe what really takes place. I expect that 
what really is taking place is closer to what Professor Friedman was talking 
about this morning regardless of how well the formalisms fit the data. 

Professor Pitzer. The point, if I may explain it in more detail, is that 
more terms can be taken in the exponential expansion for symmetrical electro- 
lytes without inconsistency. Once the ions have been summed over to get 
electrical neutrality, the second term is the only term that effects the Poisson 
equation since the third term has no effect on the Poisson equation for sym- 
metrical electrolytes. Therefore, one can carry this third term along without any 
logical inconsistency with the linearized Poisson equation for a symmetrical 
electrolyte but not for an unsymmetrical one. That is the point, and this 
third term leads to some interesting results which, as far as I know, no one 
has ever paid any attention to. 

Professor Rasaiah. You are talking about doing essentially the same thing 
that Card and Valleau did, except that they used the complete exponential form. 

Professor Pitzer. Indeed, they took the complete exponential form, but 
much of the interesting part of it can be obtained from this third term, which 
is not inconsistent for a symmetrical electrolyte. 

Professor R. H. Stokes (University of New England, Armidale, Australia). 
In a calculation of transport properties about two years ago, I included that 
second term. For a symmetrical electrolyte the second-order term vanishes 
from the charge density, so that it does not affect the activity coefficient, but 
it still appears in the diffusion coefficient. 
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Professor Frank. But it still would not give the same free energy when 
the Gtintelberg or the Debye-Htickel charging processes are used, which 
means that there is a fundamental self-inconsistency there, even with that 
term. 

Professor Stokes. It does give the same free energy, I think. 
Professor Pitzer. That third term does not give anything in the charging 

process because it only gives a hard-core effect; it gives no electrostatistics. 
We are now saying the pressure equation gives a different result from the 
charging process. It is just an approximation, but a rather interesting point. 

Professor Frank. The term z~e~b~ is not a proper potential of average 
force. 

Professor H. L. Friedman (State University of  New York, Stony Brook). 
I wonder whether the difficulty of the application of the HNC equation to 
2-2 electrolytes might be relieved if one would use a soft-core potential 
because then the cusp in g+_ for the same radii is rounded off. 

Professor Rasaiah. Yes, that is possible, but I cannot be certain because 
I have not done it. 

Professor Frank. From the standpoint of the extrapolation, I am going to 
take advantage of my position and point out that if you are willing to mix a 
little art with your science (as a matter of fact, everybody does; there are always 
personal choices one makes in the form of an equation to fit this, that, and 
the other thing), you can take Professor Rasaiah's E' and subtract an Eo, 
put in the proportionality factor, divide by ~/m, and plot his experimental 
points against m 1/2 for some assumed Eo. If  we have the right Eo, we know 
where this has to come in (we are treating this the way we would a $, you see; 
~b is customarily extrapolated this way). Figure 21 (this was done on the 
blackboard) shows such a plot coming in to the correct theoretical intercept. 
What creates the problem in the first place is that the experimental points for 
ZnSO, go down to low-enough concentrations to show that the quantity 
(E' - -  Eo)/km 1/2 rises above the theoretical limiting value, so that, in going to 
rn ~/2 = O, the curve is going to have to turn back down again. But how a trial 
extrapolation will actually go will depend on what trial value of Eo has been 
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chosen. If  it has been chosen too big, the quantity ( E '  - E o ) / k m  1/2 will be 
everywhere too negative, but the more so the smaller rn 1/2, till it goes to negative 
infinity in the limit, as the figure shows. (The symbol E* is used to show that 
this quantity is a trial value.) I f  Eo has been chosen too small, the opposite 
catastrophe occurs, the curve lying everywhere too high and going positively 
infinite at rn 1/2 = 0, as also shown. It is only ifEo is "just right," like the third 
little bear 's porridge, that the curve can be imagined to turn over and come in 
to the correct theoretical intercept (as also shown). That is why I say that 
if you are willing to put a little art into your science--try different Eo's and 
see which gives a curve which your artistic eye tells you is going to come in 
at the right p lace--you can set limits on what Eo must be without any theory 
except the limiting law, which we know is right. With Rasaiah's ZnSO4 
data, it seems to be not too hard to guess to within 30 or 40 #V where Eo has 
to come, and we may have to make do with this until someone comes up with a 
better method. 

Professor Stokes. Dr. Rasaiah's final figure (Fig. 20) seems to me of 
great interest because here the radial distribution function is considered for 
two uncharged solute particles which are hard spheres of the same diameter 
as the solvent. I f  you follow this up, you will be exactly where Debye was. 
In effect, Dr. Frank, what you are saying is that the best way to describe the  
solution is to consider it as an ideal solution, which is exactly what the hard- 
sphere system plus the coulomb term would be. This is what Debye used. 
It  was very good indeed. 


